STT-tensorflow/tensorflow/lite/micro/benchmarks/person_detection_benchmark.cc
Advait Jain 4dadd12623 Move schema version into micro_interpreter.h
This is a first (somewhat non-intuitive) step towards being able to use
clang as part of the github CI system.

The benefits of this refactor are that we avoid a dependency into
tensorflow/core which reduces the number of files that need to be
downloaded as part of a bazel build from a TFLM CI docker image.

The tflite schema version has been unchanged since at-least Oct 2018
(when tflite was moved out of tensorflow/contrib).

Progress towards preventing a repeat of https://github.com/tensorflow/tensorflow/issues/46415
2021-01-15 11:17:42 -08:00

91 lines
3.7 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/micro/benchmarks/micro_benchmark.h"
#include "tensorflow/lite/micro/examples/person_detection/model_settings.h"
#include "tensorflow/lite/micro/examples/person_detection/no_person_image_data.h"
#include "tensorflow/lite/micro/examples/person_detection/person_detect_model_data.h"
#include "tensorflow/lite/micro/examples/person_detection/person_image_data.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_utils.h"
#include "tensorflow/lite/schema/schema_generated.h"
/*
* Person Detection benchmark. Evaluates runtime performance of the visual
* wakewords person detection model. This is the same model found in
* exmaples/person_detection.
*/
namespace {
using PersonDetectionOpResolver = tflite::AllOpsResolver;
using PersonDetectionBenchmarkRunner = MicroBenchmarkRunner<int8_t>;
// Create an area of memory to use for input, output, and intermediate arrays.
// Align arena to 16 bytes to avoid alignment warnings on certain platforms.
constexpr int kTensorArenaSize = 135 * 1024;
alignas(16) uint8_t tensor_arena[kTensorArenaSize];
uint8_t op_resolver_buffer[sizeof(PersonDetectionOpResolver)];
uint8_t benchmark_runner_buffer[sizeof(PersonDetectionBenchmarkRunner)];
PersonDetectionBenchmarkRunner* benchmark_runner = nullptr;
// Initialize benchmark runner instance explicitly to avoid global init order
// issues on Sparkfun. Use new since static variables within a method
// are automatically surrounded by locking, which breaks bluepill and stm32f4.
void CreateBenchmarkRunner() {
// We allocate PersonDetectionOpResolver from a global buffer
// because the object's lifetime must exceed that of the
// PersonDetectionBenchmarkRunner object.
benchmark_runner = new (benchmark_runner_buffer)
PersonDetectionBenchmarkRunner(g_person_detect_model_data,
new (op_resolver_buffer)
PersonDetectionOpResolver(),
tensor_arena, kTensorArenaSize);
}
void InitializeBenchmarkRunner() {
CreateBenchmarkRunner();
benchmark_runner->SetInput(reinterpret_cast<const int8_t*>(g_person_data));
}
void PersonDetectionTenIerationsWithPerson() {
benchmark_runner->SetInput(reinterpret_cast<const int8_t*>(g_person_data));
for (int i = 0; i < 10; i++) {
benchmark_runner->RunSingleIteration();
}
}
void PersonDetectionTenIerationsWithoutPerson() {
benchmark_runner->SetInput(reinterpret_cast<const int8_t*>(g_no_person_data));
for (int i = 0; i < 10; i++) {
benchmark_runner->RunSingleIteration();
}
}
} // namespace
TF_LITE_MICRO_BENCHMARKS_BEGIN
TF_LITE_MICRO_BENCHMARK(InitializeBenchmarkRunner());
TF_LITE_MICRO_BENCHMARK(benchmark_runner->RunSingleIteration());
TF_LITE_MICRO_BENCHMARK(PersonDetectionTenIerationsWithPerson());
TF_LITE_MICRO_BENCHMARK(PersonDetectionTenIerationsWithoutPerson());
TF_LITE_MICRO_BENCHMARKS_END