This is a first (somewhat non-intuitive) step towards being able to use clang as part of the github CI system. The benefits of this refactor are that we avoid a dependency into tensorflow/core which reduces the number of files that need to be downloaded as part of a bazel build from a TFLM CI docker image. The tflite schema version has been unchanged since at-least Oct 2018 (when tflite was moved out of tensorflow/contrib). Progress towards preventing a repeat of https://github.com/tensorflow/tensorflow/issues/46415
91 lines
3.7 KiB
C++
91 lines
3.7 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/micro/all_ops_resolver.h"
|
|
#include "tensorflow/lite/micro/benchmarks/micro_benchmark.h"
|
|
#include "tensorflow/lite/micro/examples/person_detection/model_settings.h"
|
|
#include "tensorflow/lite/micro/examples/person_detection/no_person_image_data.h"
|
|
#include "tensorflow/lite/micro/examples/person_detection/person_detect_model_data.h"
|
|
#include "tensorflow/lite/micro/examples/person_detection/person_image_data.h"
|
|
#include "tensorflow/lite/micro/micro_error_reporter.h"
|
|
#include "tensorflow/lite/micro/micro_interpreter.h"
|
|
#include "tensorflow/lite/micro/micro_utils.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
/*
|
|
* Person Detection benchmark. Evaluates runtime performance of the visual
|
|
* wakewords person detection model. This is the same model found in
|
|
* exmaples/person_detection.
|
|
*/
|
|
|
|
namespace {
|
|
|
|
using PersonDetectionOpResolver = tflite::AllOpsResolver;
|
|
using PersonDetectionBenchmarkRunner = MicroBenchmarkRunner<int8_t>;
|
|
|
|
// Create an area of memory to use for input, output, and intermediate arrays.
|
|
// Align arena to 16 bytes to avoid alignment warnings on certain platforms.
|
|
constexpr int kTensorArenaSize = 135 * 1024;
|
|
alignas(16) uint8_t tensor_arena[kTensorArenaSize];
|
|
|
|
uint8_t op_resolver_buffer[sizeof(PersonDetectionOpResolver)];
|
|
uint8_t benchmark_runner_buffer[sizeof(PersonDetectionBenchmarkRunner)];
|
|
PersonDetectionBenchmarkRunner* benchmark_runner = nullptr;
|
|
|
|
// Initialize benchmark runner instance explicitly to avoid global init order
|
|
// issues on Sparkfun. Use new since static variables within a method
|
|
// are automatically surrounded by locking, which breaks bluepill and stm32f4.
|
|
void CreateBenchmarkRunner() {
|
|
// We allocate PersonDetectionOpResolver from a global buffer
|
|
// because the object's lifetime must exceed that of the
|
|
// PersonDetectionBenchmarkRunner object.
|
|
benchmark_runner = new (benchmark_runner_buffer)
|
|
PersonDetectionBenchmarkRunner(g_person_detect_model_data,
|
|
new (op_resolver_buffer)
|
|
PersonDetectionOpResolver(),
|
|
tensor_arena, kTensorArenaSize);
|
|
}
|
|
|
|
void InitializeBenchmarkRunner() {
|
|
CreateBenchmarkRunner();
|
|
benchmark_runner->SetInput(reinterpret_cast<const int8_t*>(g_person_data));
|
|
}
|
|
|
|
void PersonDetectionTenIerationsWithPerson() {
|
|
benchmark_runner->SetInput(reinterpret_cast<const int8_t*>(g_person_data));
|
|
for (int i = 0; i < 10; i++) {
|
|
benchmark_runner->RunSingleIteration();
|
|
}
|
|
}
|
|
|
|
void PersonDetectionTenIerationsWithoutPerson() {
|
|
benchmark_runner->SetInput(reinterpret_cast<const int8_t*>(g_no_person_data));
|
|
for (int i = 0; i < 10; i++) {
|
|
benchmark_runner->RunSingleIteration();
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
TF_LITE_MICRO_BENCHMARKS_BEGIN
|
|
|
|
TF_LITE_MICRO_BENCHMARK(InitializeBenchmarkRunner());
|
|
TF_LITE_MICRO_BENCHMARK(benchmark_runner->RunSingleIteration());
|
|
TF_LITE_MICRO_BENCHMARK(PersonDetectionTenIerationsWithPerson());
|
|
TF_LITE_MICRO_BENCHMARK(PersonDetectionTenIerationsWithoutPerson());
|
|
|
|
TF_LITE_MICRO_BENCHMARKS_END
|