Some of the usages were wrong before; the bool input was invoked as {}. PiperOrigin-RevId: 330623020 Change-Id: I9505c199297d6a1e7465c0610184652168f61430
605 lines
23 KiB
C++
605 lines
23 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
// Unit test for TFLite SVDF op.
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <initializer_list>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
static float svdf_input[] = {
|
|
0.12609188, -0.46347019, -0.89598465,
|
|
0.35867718, 0.36897406, 0.73463392,
|
|
|
|
0.14278367, -1.64410412, -0.75222826,
|
|
-0.57290924, 0.12729003, 0.7567004,
|
|
|
|
0.49837467, 0.19278903, 0.26584083,
|
|
0.17660543, 0.52949083, -0.77931279,
|
|
|
|
-0.11186574, 0.13164264, -0.05349274,
|
|
-0.72674477, -0.5683046, 0.55900657,
|
|
|
|
-0.68892461, 0.37783599, 0.18263303,
|
|
-0.63690937, 0.44483393, -0.71817774,
|
|
|
|
-0.81299269, -0.86831826, 1.43940818,
|
|
-0.95760226, 1.82078898, 0.71135032,
|
|
|
|
-1.45006323, -0.82251364, -1.69082689,
|
|
-1.65087092, -1.89238167, 1.54172635,
|
|
|
|
0.03966608, -0.24936394, -0.77526885,
|
|
2.06740379, -1.51439476, 1.43768692,
|
|
|
|
0.11771342, -0.23761693, -0.65898693,
|
|
0.31088525, -1.55601168, -0.87661445,
|
|
|
|
-0.89477462, 1.67204106, -0.53235275,
|
|
-0.6230064, 0.29819036, 1.06939757,
|
|
};
|
|
|
|
static float svdf_golden_output_rank_1[] = {
|
|
0.014899, -0.0517661, -0.143725, -0.00271883,
|
|
-0.03004015, 0.09565311, 0.1587342, 0.00784263,
|
|
|
|
0.068281, -0.162217, -0.152268, 0.00323521,
|
|
0.01582633, 0.03858774, -0.03001583, -0.02671271,
|
|
|
|
-0.0317821, -0.0333089, 0.0609602, 0.0333759,
|
|
-0.01432795, 0.05524484, 0.1101355, -0.02382665,
|
|
|
|
-0.00623099, -0.077701, -0.391193, -0.0136691,
|
|
-0.02333033, 0.02293761, 0.12338032, 0.04326871,
|
|
|
|
0.201551, -0.164607, -0.179462, -0.0592739,
|
|
0.01064911, -0.17503069, 0.07821996, -0.00224009,
|
|
|
|
0.0886511, -0.0875401, -0.269283, 0.0281379,
|
|
-0.02282338, 0.09741908, 0.32973239, 0.12281385,
|
|
|
|
-0.201174, -0.586145, -0.628624, -0.0330412,
|
|
0.24780814, -0.39304617, -0.22473189, 0.02589256,
|
|
|
|
-0.0839096, -0.299329, 0.108746, 0.109808,
|
|
0.10084175, -0.06416984, 0.28936723, 0.0026358,
|
|
|
|
0.419114, -0.237824, -0.422627, 0.175115,
|
|
-0.2314795, -0.18584411, -0.4228974, -0.12928449,
|
|
|
|
0.36726, -0.522303, -0.456502, -0.175475,
|
|
0.17012937, -0.34447709, 0.38505614, -0.28158101,
|
|
};
|
|
|
|
static float svdf_golden_output_rank_2[] = {
|
|
-0.09623547, -0.10193135, 0.11083051, -0.0347917,
|
|
0.1141196, 0.12965347, -0.12652366, 0.01007236,
|
|
|
|
-0.16396809, -0.21247184, 0.11259045, -0.04156673,
|
|
0.10132131, -0.06143532, -0.00924693, 0.10084561,
|
|
|
|
0.01257364, 0.0506071, -0.19287863, -0.07162561,
|
|
-0.02033747, 0.22673416, 0.15487903, 0.02525555,
|
|
|
|
-0.1411963, -0.37054959, 0.01774767, 0.05867489,
|
|
0.09607603, -0.0141301, -0.08995658, 0.12867066,
|
|
|
|
-0.27142537, -0.16955489, 0.18521598, -0.12528358,
|
|
0.00331409, 0.11167502, 0.02218599, -0.07309391,
|
|
|
|
0.09593632, -0.28361851, -0.0773851, 0.17199151,
|
|
-0.00075242, 0.33691186, -0.1536046, 0.16572715,
|
|
|
|
-0.27916506, -0.27626723, 0.42615682, 0.3225764,
|
|
-0.37472126, -0.55655634, -0.05013514, 0.289112,
|
|
|
|
-0.24418658, 0.07540751, -0.1940318, -0.08911639,
|
|
0.00732617, 0.46737891, 0.26449674, 0.24888524,
|
|
|
|
-0.17225097, -0.54660404, -0.38795233, 0.08389944,
|
|
0.07736043, -0.28260678, 0.15666828, 1.14949894,
|
|
|
|
-0.57454878, -0.64704704, 0.73235172, -0.34616736,
|
|
0.21120001, -0.22927976, 0.02455296, -0.35906726,
|
|
};
|
|
|
|
// Derived class of SingleOpModel, which is used to test SVDF TFLite op.
|
|
class BaseSVDFOpModel : public SingleOpModel {
|
|
public:
|
|
BaseSVDFOpModel(int batches, int units, int input_size, int memory_size,
|
|
int rank,
|
|
TensorType weights_feature_type = TensorType_FLOAT32,
|
|
TensorType weights_time_type = TensorType_FLOAT32,
|
|
bool asymmetric_quantize_inputs = false)
|
|
: batches_(batches),
|
|
units_(units),
|
|
input_size_(input_size),
|
|
memory_size_(memory_size),
|
|
rank_(rank) {
|
|
input_ = AddInput(TensorType_FLOAT32);
|
|
weights_feature_ = AddInput(weights_feature_type);
|
|
weights_time_ = AddInput(weights_time_type);
|
|
bias_ = AddNullInput();
|
|
const int num_filters = units * rank;
|
|
activation_state_ = AddVariableInput(
|
|
TensorData{TensorType_FLOAT32, {batches, memory_size * num_filters}});
|
|
output_ = AddOutput(TensorType_FLOAT32);
|
|
SetBuiltinOp(BuiltinOperator_SVDF, BuiltinOptions_SVDFOptions,
|
|
CreateSVDFOptions(builder_, rank, ActivationFunctionType_NONE,
|
|
asymmetric_quantize_inputs)
|
|
.Union());
|
|
BuildInterpreter({
|
|
{batches_, input_size_}, // input tensor
|
|
{units_ * rank, input_size_}, // weights_feature tensor
|
|
{units_ * rank, memory_size_}, // weights_time tensor
|
|
{units_}, // bias tensor
|
|
{batches, memory_size * num_filters} // activation_state tensor
|
|
});
|
|
}
|
|
|
|
// Populates the weights_feature tensor.
|
|
void SetWeightsFeature(std::initializer_list<float> f) {
|
|
PopulateTensor(weights_feature_, f);
|
|
}
|
|
|
|
// Populates the weights_time tensor.
|
|
void SetWeightsTime(std::initializer_list<float> f) {
|
|
PopulateTensor(weights_time_, f);
|
|
}
|
|
|
|
// Populates the input tensor.
|
|
void SetInput(int offset, float* begin, float* end) {
|
|
PopulateTensor(input_, offset, begin, end);
|
|
}
|
|
|
|
// Extracts the output tensor from the SVDF op.
|
|
std::vector<float> GetOutput() { return ExtractVector<float>(output_); }
|
|
|
|
int input_size() { return input_size_; }
|
|
int num_units() { return units_; }
|
|
int num_batches() { return batches_; }
|
|
|
|
protected:
|
|
int input_;
|
|
int weights_feature_;
|
|
int weights_time_;
|
|
int bias_;
|
|
int activation_state_;
|
|
int output_;
|
|
|
|
int batches_;
|
|
int units_;
|
|
int input_size_;
|
|
int memory_size_;
|
|
int rank_;
|
|
};
|
|
|
|
class SVDFOpModel : public BaseSVDFOpModel {
|
|
public:
|
|
using BaseSVDFOpModel::BaseSVDFOpModel;
|
|
};
|
|
|
|
class HybridSVDFOpModel : public BaseSVDFOpModel {
|
|
public:
|
|
HybridSVDFOpModel(int batches, int units, int input_size, int memory_size,
|
|
int rank, TensorType tensor_type,
|
|
bool asymmetric_quantize_inputs)
|
|
: BaseSVDFOpModel(batches, units, input_size, memory_size, rank,
|
|
tensor_type, tensor_type, asymmetric_quantize_inputs) {
|
|
tensor_type_ = tensor_type;
|
|
}
|
|
|
|
void SetWeights(int weights_idx, const std::vector<float>& f) {
|
|
if (tensor_type_ == TensorType_UINT8) {
|
|
SymmetricQuantizeAndPopulate(weights_idx, f);
|
|
} else {
|
|
SignedSymmetricQuantizeAndPopulate(weights_idx, f);
|
|
}
|
|
}
|
|
|
|
void SetWeightsFeature(std::initializer_list<float> f) {
|
|
SetWeights(weights_feature_, f);
|
|
}
|
|
|
|
void SetWeightsTime(std::initializer_list<float> f) {
|
|
SetWeights(weights_time_, f);
|
|
}
|
|
|
|
protected:
|
|
TensorType tensor_type_;
|
|
};
|
|
|
|
class SVDFOpTest : public ::testing::TestWithParam<bool> {
|
|
protected:
|
|
void VerifyGoldens(float golden_input[], float golden_output[],
|
|
int golden_size, BaseSVDFOpModel* svdf,
|
|
float tolerance = 1e-5) {
|
|
const int svdf_num_batches = svdf->num_batches();
|
|
const int svdf_input_size = svdf->input_size();
|
|
const int svdf_num_units = svdf->num_units();
|
|
const int input_sequence_size =
|
|
golden_size / sizeof(float) / (svdf_input_size * svdf_num_batches);
|
|
// Going over each input batch, setting the input tensor, invoking the SVDF
|
|
// op and checking the output with the expected golden values.
|
|
for (int i = 0; i < input_sequence_size; i++) {
|
|
float* batch_start =
|
|
golden_input + i * svdf_input_size * svdf_num_batches;
|
|
float* batch_end = batch_start + svdf_input_size * svdf_num_batches;
|
|
svdf->SetInput(0, batch_start, batch_end);
|
|
|
|
svdf->Invoke();
|
|
|
|
const float* golden_start =
|
|
golden_output + i * svdf_num_units * svdf_num_batches;
|
|
const float* golden_end =
|
|
golden_start + svdf_num_units * svdf_num_batches;
|
|
std::vector<float> expected;
|
|
expected.insert(expected.end(), golden_start, golden_end);
|
|
|
|
EXPECT_THAT(svdf->GetOutput(),
|
|
ElementsAreArray(ArrayFloatNear(expected, tolerance)));
|
|
}
|
|
}
|
|
};
|
|
|
|
INSTANTIATE_TEST_SUITE_P(SVDFOpTest, SVDFOpTest,
|
|
::testing::ValuesIn({false, true}));
|
|
|
|
TEST_F(SVDFOpTest, BlackBoxTestRank1) {
|
|
SVDFOpModel svdf(/*batches=*/2, /*units=*/4, /*input_size=*/3,
|
|
/*memory_size=*/10, /*rank=*/1);
|
|
svdf.SetWeightsFeature({-0.31930989, -0.36118156, 0.0079667, 0.37613347,
|
|
0.22197971, 0.12416199, 0.27901134, 0.27557442,
|
|
0.3905206, -0.36137494, -0.06634006, -0.10640851});
|
|
|
|
svdf.SetWeightsTime(
|
|
{-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156,
|
|
0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199,
|
|
|
|
0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518,
|
|
-0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296,
|
|
|
|
-0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236,
|
|
0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846,
|
|
|
|
-0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166,
|
|
-0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657});
|
|
|
|
VerifyGoldens(svdf_input, svdf_golden_output_rank_1, sizeof(svdf_input),
|
|
&svdf);
|
|
}
|
|
|
|
TEST_F(SVDFOpTest, BlackBoxTestRank2) {
|
|
SVDFOpModel svdf(/*batches=*/2, /*units=*/4, /*input_size=*/3,
|
|
/*memory_size=*/10, /*rank=*/2);
|
|
svdf.SetWeightsFeature({-0.31930989, 0.0079667, 0.39296314, 0.37613347,
|
|
0.12416199, 0.15785322, 0.27901134, 0.3905206,
|
|
0.21931258, -0.36137494, -0.10640851, 0.31053296,
|
|
-0.36118156, -0.0976817, -0.36916667, 0.22197971,
|
|
0.15294972, 0.38031587, 0.27557442, 0.39635518,
|
|
-0.21580373, -0.06634006, -0.02702999, 0.27072677});
|
|
|
|
svdf.SetWeightsTime(
|
|
{-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156,
|
|
0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199,
|
|
|
|
0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518,
|
|
-0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296,
|
|
|
|
-0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236,
|
|
0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846,
|
|
|
|
-0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166,
|
|
-0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657,
|
|
|
|
-0.14884081, 0.19931212, -0.36002168, 0.34663299, -0.11405486,
|
|
0.12672701, 0.39463779, -0.07886535, -0.06384811, 0.08249187,
|
|
|
|
-0.26816407, -0.19905911, 0.29211238, 0.31264046, -0.28664589,
|
|
0.05698794, 0.11613581, 0.14078894, 0.02187902, -0.21781836,
|
|
|
|
-0.15567942, 0.08693647, -0.38256618, 0.36580828, -0.22922277,
|
|
-0.0226903, 0.12878349, -0.28122205, -0.10850525, -0.11955214,
|
|
|
|
0.27179423, -0.04710215, 0.31069002, 0.22672787, 0.09580326,
|
|
0.08682203, 0.1258215, 0.1851041, 0.29228821, 0.12366763});
|
|
|
|
VerifyGoldens(svdf_input, svdf_golden_output_rank_2, sizeof(svdf_input),
|
|
&svdf);
|
|
}
|
|
|
|
TEST_P(SVDFOpTest, BlackBoxTestHybridRank1Uint8) {
|
|
HybridSVDFOpModel svdf(/*batches=*/2, /*units=*/4, /*input_size=*/3,
|
|
/*memory_size=*/10, /*rank=*/1, TensorType_UINT8,
|
|
GetParam());
|
|
svdf.SetWeightsFeature({-0.31930989, -0.36118156, 0.0079667, 0.37613347,
|
|
0.22197971, 0.12416199, 0.27901134, 0.27557442,
|
|
0.3905206, -0.36137494, -0.06634006, -0.10640851});
|
|
|
|
svdf.SetWeightsTime(
|
|
{-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156,
|
|
0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199,
|
|
|
|
0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518,
|
|
-0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296,
|
|
|
|
-0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236,
|
|
0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846,
|
|
|
|
-0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166,
|
|
-0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657});
|
|
|
|
VerifyGoldens(svdf_input, svdf_golden_output_rank_1, sizeof(svdf_input),
|
|
&svdf,
|
|
/*tolerance=*/0.004285);
|
|
}
|
|
|
|
TEST_P(SVDFOpTest, BlackBoxTestHybridRank2Uint8) {
|
|
HybridSVDFOpModel svdf(/*batches=*/2, /*units=*/4, /*input_size=*/3,
|
|
/*memory_size=*/10, /*rank=*/2, TensorType_UINT8,
|
|
GetParam());
|
|
svdf.SetWeightsFeature({-0.31930989, 0.0079667, 0.39296314, 0.37613347,
|
|
0.12416199, 0.15785322, 0.27901134, 0.3905206,
|
|
0.21931258, -0.36137494, -0.10640851, 0.31053296,
|
|
-0.36118156, -0.0976817, -0.36916667, 0.22197971,
|
|
0.15294972, 0.38031587, 0.27557442, 0.39635518,
|
|
-0.21580373, -0.06634006, -0.02702999, 0.27072677});
|
|
|
|
svdf.SetWeightsTime(
|
|
{-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156,
|
|
0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199,
|
|
|
|
0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518,
|
|
-0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296,
|
|
|
|
-0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236,
|
|
0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846,
|
|
|
|
-0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166,
|
|
-0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657,
|
|
|
|
-0.14884081, 0.19931212, -0.36002168, 0.34663299, -0.11405486,
|
|
0.12672701, 0.39463779, -0.07886535, -0.06384811, 0.08249187,
|
|
|
|
-0.26816407, -0.19905911, 0.29211238, 0.31264046, -0.28664589,
|
|
0.05698794, 0.11613581, 0.14078894, 0.02187902, -0.21781836,
|
|
|
|
-0.15567942, 0.08693647, -0.38256618, 0.36580828, -0.22922277,
|
|
-0.0226903, 0.12878349, -0.28122205, -0.10850525, -0.11955214,
|
|
|
|
0.27179423, -0.04710215, 0.31069002, 0.22672787, 0.09580326,
|
|
0.08682203, 0.1258215, 0.1851041, 0.29228821, 0.12366763});
|
|
|
|
VerifyGoldens(svdf_input, svdf_golden_output_rank_2, sizeof(svdf_input),
|
|
&svdf,
|
|
/*tolerance=*/0.007175);
|
|
}
|
|
|
|
TEST_P(SVDFOpTest, BlackBoxTestHybridRank1Int8) {
|
|
HybridSVDFOpModel svdf(/*batches=*/2, /*units=*/4, /*input_size=*/3,
|
|
/*memory_size=*/10, /*rank=*/1, TensorType_INT8,
|
|
GetParam());
|
|
svdf.SetWeightsFeature({-0.31930989, -0.36118156, 0.0079667, 0.37613347,
|
|
0.22197971, 0.12416199, 0.27901134, 0.27557442,
|
|
0.3905206, -0.36137494, -0.06634006, -0.10640851});
|
|
|
|
svdf.SetWeightsTime(
|
|
{-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156,
|
|
0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199,
|
|
|
|
0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518,
|
|
-0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296,
|
|
|
|
-0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236,
|
|
0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846,
|
|
|
|
-0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166,
|
|
-0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657});
|
|
|
|
VerifyGoldens(svdf_input, svdf_golden_output_rank_1, sizeof(svdf_input),
|
|
&svdf,
|
|
/*tolerance=*/0.004285);
|
|
}
|
|
|
|
TEST_P(SVDFOpTest, BlackBoxTestHybridRank2Int8) {
|
|
HybridSVDFOpModel svdf(/*batches=*/2, /*units=*/4, /*input_size=*/3,
|
|
/*memory_size=*/10, /*rank=*/2, TensorType_INT8,
|
|
GetParam());
|
|
svdf.SetWeightsFeature({-0.31930989, 0.0079667, 0.39296314, 0.37613347,
|
|
0.12416199, 0.15785322, 0.27901134, 0.3905206,
|
|
0.21931258, -0.36137494, -0.10640851, 0.31053296,
|
|
-0.36118156, -0.0976817, -0.36916667, 0.22197971,
|
|
0.15294972, 0.38031587, 0.27557442, 0.39635518,
|
|
-0.21580373, -0.06634006, -0.02702999, 0.27072677});
|
|
|
|
svdf.SetWeightsTime(
|
|
{-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156,
|
|
0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199,
|
|
|
|
0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518,
|
|
-0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296,
|
|
|
|
-0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236,
|
|
0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846,
|
|
|
|
-0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166,
|
|
-0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657,
|
|
|
|
-0.14884081, 0.19931212, -0.36002168, 0.34663299, -0.11405486,
|
|
0.12672701, 0.39463779, -0.07886535, -0.06384811, 0.08249187,
|
|
|
|
-0.26816407, -0.19905911, 0.29211238, 0.31264046, -0.28664589,
|
|
0.05698794, 0.11613581, 0.14078894, 0.02187902, -0.21781836,
|
|
|
|
-0.15567942, 0.08693647, -0.38256618, 0.36580828, -0.22922277,
|
|
-0.0226903, 0.12878349, -0.28122205, -0.10850525, -0.11955214,
|
|
|
|
0.27179423, -0.04710215, 0.31069002, 0.22672787, 0.09580326,
|
|
0.08682203, 0.1258215, 0.1851041, 0.29228821, 0.12366763});
|
|
|
|
VerifyGoldens(svdf_input, svdf_golden_output_rank_2, sizeof(svdf_input),
|
|
&svdf,
|
|
/*tolerance=*/0.007175);
|
|
}
|
|
|
|
// Test case for full integer quantization of SVDF.
|
|
class IntegerSVDFOpModel : public SingleOpModel {
|
|
public:
|
|
IntegerSVDFOpModel(int batches, int units, int input_size, int memory_size,
|
|
int rank)
|
|
: batches_(batches),
|
|
units_(units),
|
|
input_size_(input_size),
|
|
memory_size_(memory_size),
|
|
rank_(rank) {
|
|
const int num_filters = units * rank;
|
|
input_ = AddInput({TensorType_INT8, {batches, input_size}, -1, 1});
|
|
weights_feature_ =
|
|
AddInput({TensorType_INT8, {num_filters, input_size}, -0.5, 0.5});
|
|
weights_time_ =
|
|
AddInput({TensorType_INT16, {num_filters, memory_size}, -1, 1});
|
|
bias_ = AddInput({TensorType_INT32, {units}, -512, 512});
|
|
activation_state_ = AddVariableInput(
|
|
{TensorType_INT16, {batches, memory_size * num_filters}, -16, 16});
|
|
output_ = AddOutput({TensorType_INT8, {batches, units}, -0.5, 0.5});
|
|
SetBuiltinOp(
|
|
BuiltinOperator_SVDF, BuiltinOptions_SVDFOptions,
|
|
CreateSVDFOptions(builder_, rank, ActivationFunctionType_RELU).Union());
|
|
BuildInterpreter({
|
|
{batches, input_size}, // input tensor
|
|
{num_filters, input_size}, // weights_feature tensor
|
|
{num_filters, memory_size}, // weights_time tensor
|
|
{units}, // bias tensor
|
|
{batches, memory_size * num_filters} // activation_state tensor
|
|
});
|
|
}
|
|
|
|
// Populates the weights_feature tensor.
|
|
void SetWeightsFeature(const std::vector<float>& f) {
|
|
QuantizeAndPopulate<int8_t>(weights_feature_, f);
|
|
}
|
|
|
|
// Populates the weights_time tensor.
|
|
void SetWeightsTime(const std::vector<float>& f) {
|
|
QuantizeAndPopulate<int16_t>(weights_time_, f);
|
|
}
|
|
|
|
void SetBias(const std::vector<float>& f) {
|
|
QuantizeAndPopulate<int32_t>(bias_, f);
|
|
}
|
|
|
|
// Populates the input tensor.
|
|
void SetInput(const std::vector<float>& f) {
|
|
QuantizeAndPopulate<int8_t>(input_, f);
|
|
}
|
|
|
|
// Extracts the output tensor from the SVDF op.
|
|
std::vector<int8_t> GetOutput() { return ExtractVector<int8_t>(output_); }
|
|
|
|
protected:
|
|
int input_;
|
|
int weights_feature_;
|
|
int weights_time_;
|
|
int bias_;
|
|
int activation_state_;
|
|
int output_;
|
|
|
|
int batches_;
|
|
int units_;
|
|
int input_size_;
|
|
int memory_size_;
|
|
int rank_;
|
|
};
|
|
|
|
TEST_F(SVDFOpTest, BlackBoxTestInteger) {
|
|
IntegerSVDFOpModel svdf(/*batches=*/2, /*units=*/4, /*input_size=*/3,
|
|
/*memory_size=*/10, /*rank=*/1);
|
|
svdf.SetWeightsFeature({-0.31930989, -0.36118156, 0.0079667, 0.37613347,
|
|
0.22197971, 0.12416199, 0.27901134, 0.27557442,
|
|
0.3905206, -0.36137494, -0.06634006, -0.10640851});
|
|
|
|
svdf.SetWeightsTime(
|
|
{-0.31930989, 0.37613347, 0.27901134, -0.36137494, -0.36118156,
|
|
0.22197971, 0.27557442, -0.06634006, 0.0079667, 0.12416199,
|
|
|
|
0.3905206, -0.10640851, -0.0976817, 0.15294972, 0.39635518,
|
|
-0.02702999, 0.39296314, 0.15785322, 0.21931258, 0.31053296,
|
|
|
|
-0.36916667, 0.38031587, -0.21580373, 0.27072677, 0.23622236,
|
|
0.34936687, 0.18174365, 0.35907319, -0.17493086, 0.324846,
|
|
|
|
-0.10781813, 0.27201805, 0.14324132, -0.23681851, -0.27115166,
|
|
-0.01580888, -0.14943552, 0.15465137, 0.09784451, -0.0337657});
|
|
|
|
svdf.SetBias({-0.0976817, 0.15294972, 0.39635518, -0.02702999});
|
|
|
|
const std::vector<std::vector<float>> input_sequences = {
|
|
{0.49837467, 0.19278903, 0.26584083, 0.17660543, 0.52949083, -0.77931279},
|
|
{0.12609188, -0.46347019, -0.89598465, 0.35867718, 0.36897406,
|
|
0.73463392},
|
|
{0.14278367, -1.64410412, -0.75222826, -0.57290924, 0.12729003,
|
|
0.7567004},
|
|
{0.49837467, 0.19278903, 0.26584083, 0.17660543, 0.52949083, -0.77931279},
|
|
{0.12609188, -0.46347019, -0.89598465, 0.35867718, 0.36897406,
|
|
0.73463392},
|
|
{0.14278367, -1.64410412, -0.75222826, -0.57290924, 0.12729003,
|
|
0.7567004},
|
|
{0.49837467, 0.19278903, 0.26584083, 0.17660543, 0.52949083, -0.77931279},
|
|
{0.12609188, -0.46347019, -0.89598465, 0.35867718, 0.36897406,
|
|
0.73463392},
|
|
{0.14278367, -1.64410412, -0.75222826, -0.57290924, 0.12729003,
|
|
0.7567004},
|
|
{0.49837467, 0.19278903, 0.26584083, 0.17660543, 0.52949083, -0.77931279},
|
|
{0.12609188, -0.46347019, -0.89598465, 0.35867718, 0.36897406,
|
|
0.73463392},
|
|
{0.14278367, -1.64410412, -0.75222826, -0.57290924, 0.12729003,
|
|
0.7567004}};
|
|
|
|
const std::vector<std::vector<int8_t>> expected_output = {
|
|
{-9, 24, 31, 1, -10, 10, -3, 0},
|
|
{2, 4, -44, -7, -10, 32, 52, 1},
|
|
{12, -17, 9, -8, 7, 16, -11, -8},
|
|
{-26, 29, 28, 16, -23, 26, 30, -6},
|
|
{-8, -25, -86, -5, -44, 59, 81, 15},
|
|
{62, -16, -37, 3, 27, 14, 34, -10},
|
|
{1, 24, -25, 23, 31, 61, 67, 11},
|
|
{-64, -65, -128, -25, -53, 59, 127, 20},
|
|
{20, -29, -20, -15, -28, 0, 8, -27},
|
|
{54, 61, -67, 38, 38, 64, 115, 0},
|
|
{-44, -75, -128, -20, -19, 93, 101, 35},
|
|
{-5, -56, 30, -18, -40, -9, -8, -31},
|
|
};
|
|
|
|
for (int sequence_index = 0; sequence_index < 12; ++sequence_index) {
|
|
svdf.SetInput(input_sequences[sequence_index]);
|
|
svdf.Invoke();
|
|
const std::vector<int8_t> res = svdf.GetOutput();
|
|
EXPECT_THAT(res, ElementsAreArray(expected_output[sequence_index]));
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|