STT-tensorflow/tensorflow/lite/kernels/select.cc
Mihai Maruseac 1970c2158b [tflite]: Insert nullptr checks when obtaining tensors.
As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages.

We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`).

PiperOrigin-RevId: 332521299
Change-Id: I29af455bcb48d0b92e58132d951a3badbd772d56
2020-09-18 14:13:50 -07:00

216 lines
9.1 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stddef.h>
#include <stdint.h>
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace select {
constexpr int kInputTensorCondition = 0;
constexpr int kInputTensorX = 1;
constexpr int kInputTensorY = 2;
constexpr int kOutputTensor = 0;
enum KernelType {
kVersionOne,
kVersionTwo,
};
struct OpData {
bool requires_broadcast;
// True if input condition is scalar or input condition has rank one and
// matches the first dimension of other inputs.
bool has_low_rank_input_condition;
};
void* SelectInit(TfLiteContext* context, const char* buffer, size_t length) {
auto* data = new OpData;
data->requires_broadcast = false;
data->has_low_rank_input_condition = false;
return data;
}
void SelectFree(TfLiteContext* context, void* buffer) {
delete reinterpret_cast<OpData*>(buffer);
}
template <KernelType kernel_type>
TfLiteStatus SelectPrepare(TfLiteContext* context, TfLiteNode* node) {
OpData* data = reinterpret_cast<OpData*>(node->user_data);
TF_LITE_ENSURE_EQ(context, NumInputs(node), 3);
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
const TfLiteTensor* input_condition;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorCondition,
&input_condition));
const TfLiteTensor* input_x;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensorX, &input_x));
const TfLiteTensor* input_y;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensorY, &input_y));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
// Input must be bool.
TF_LITE_ENSURE_TYPES_EQ(context, input_condition->type, kTfLiteBool);
TF_LITE_ENSURE_TYPES_EQ(context, input_x->type, input_y->type);
output->type = input_x->type;
bool same_shape = HaveSameShapes(input_condition, input_x) &&
HaveSameShapes(input_x, input_y);
TfLiteIntArray* output_size;
if (!same_shape) {
switch (kernel_type) {
case kVersionOne: {
bool is_input_condition_scalar = NumDimensions(input_condition) == 0;
bool has_rank_one_input_condition =
NumDimensions(input_condition) == 1 &&
SizeOfDimension(input_condition, 0) == SizeOfDimension(input_x, 0);
data->has_low_rank_input_condition =
is_input_condition_scalar || has_rank_one_input_condition;
TF_LITE_ENSURE(context, data->has_low_rank_input_condition);
output_size = TfLiteIntArrayCopy(input_x->dims);
// Input tensors must have the same type and size
TF_LITE_ENSURE(context, HaveSameShapes(input_x, input_y));
break;
}
case kVersionTwo: {
TF_LITE_ENSURE_OK(context, CalculateShapeForBroadcast(
context, input_condition, input_x,
input_y, &output_size));
data->requires_broadcast = true;
break;
}
default:
return kTfLiteError;
}
} else {
output_size = TfLiteIntArrayCopy(input_x->dims);
}
return context->ResizeTensor(context, output, output_size);
}
TfLiteStatus SelectEval(TfLiteContext* context, TfLiteNode* node) {
OpData* data = reinterpret_cast<OpData*>(node->user_data);
const TfLiteTensor* input_condition;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensorCondition,
&input_condition));
const TfLiteTensor* input_x;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensorX, &input_x));
const TfLiteTensor* input_y;
TF_LITE_ENSURE_OK(context,
GetInputSafe(context, node, kInputTensorY, &input_y));
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context,
GetOutputSafe(context, node, kOutputTensor, &output));
#define TF_LITE_SELECT(type, op) \
reference_ops::op(GetTensorShape(input_condition), \
GetTensorData<bool>(input_condition), \
GetTensorShape(input_x), GetTensorData<type>(input_x), \
GetTensorShape(input_y), GetTensorData<type>(input_y), \
GetTensorShape(output), GetTensorData<type>(output));
#define TF_LITE_SWITCH(type, op) \
switch (type) { \
break; \
case kTfLiteBool: \
TF_LITE_SELECT(bool, op); \
break; \
case kTfLiteFloat32: \
TF_LITE_SELECT(float, op); \
break; \
case kTfLiteUInt8: \
TF_LITE_SELECT(uint8_t, op); \
break; \
case kTfLiteInt8: \
TF_LITE_SELECT(int8_t, op); \
break; \
case kTfLiteInt16: \
TF_LITE_SELECT(int16_t, op); \
break; \
case kTfLiteInt32: \
TF_LITE_SELECT(int32_t, op); \
break; \
case kTfLiteInt64: \
TF_LITE_SELECT(int64_t, op); \
break; \
default: \
context->ReportError(context, \
"Does not support type other than bool|float|int, " \
"got %d", \
type); \
return kTfLiteError; \
}
if (data->has_low_rank_input_condition) {
TF_LITE_SWITCH(input_x->type, RankOneSelect);
} else if (data->requires_broadcast) {
TF_LITE_SWITCH(input_x->type, BroadcastSelect4DSlow);
} else {
TF_LITE_SWITCH(input_x->type, Select);
}
#undef TF_LITE_SELECT
#undef TF_LITE_SWITCH
return kTfLiteOk;
}
} // namespace select
// Select op selects values of 'x' if the corresponding value of 'condition' is
// true or the value of 'y' if false. There are valid condition input sizes:
//
// 1. Either the same shape (in which case the select is elementwise), or
// 2. condition must be Rank 1 and match over the first dimension, or
// 3. condition is scalar
TfLiteRegistration* Register_SELECT() {
static TfLiteRegistration r = {select::SelectInit, select::SelectFree,
select::SelectPrepare<select::kVersionOne>,
select::SelectEval};
return &r;
}
// SelectV2 op selects values of 'x' if the corresponding value of 'condition'
// is true or the value of 'y' if false. There are valid condition input sizes:
//
// 1. Either the same shape (in which case the select is elementwise), or
// 2. Broadcastable shapes between 'condition', 'x' and 'y'.
TfLiteRegistration* Register_SELECT_V2() {
static TfLiteRegistration r = {select::SelectInit, select::SelectFree,
select::SelectPrepare<select::kVersionTwo>,
select::SelectEval};
return &r;
}
} // namespace builtin
} // namespace ops
} // namespace tflite