STT-tensorflow/tensorflow/lite/kernels/segment_sum_test.cc
Mihai Maruseac 204945b19e [tflite] Validate segment ids for segment_sum.
Segment identifiers in segment_sum should be in a 1-D tensor of same size as the first dimension of the input. The values of the tensor should be integers from {0, 1, 2, ... k-1}, where k is the first dimension of the input. The segment identifiers must not contain jumps and must be increasing.

See https://www.tensorflow.org/api_docs/python/tf/math#Segmentation as the source for these constraints.

PiperOrigin-RevId: 332510942
Change-Id: I898beaba00642c918bcd4b4d4ce893ebb190d869
2020-09-18 13:17:42 -07:00

147 lines
6.0 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <vector>
#include <gtest/gtest.h>
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
template <typename T>
class SegmentSumOpModel : public SingleOpModel {
public:
SegmentSumOpModel(const TensorData& data, const TensorData& segment_ids) {
data_id_ = AddInput(data);
segment_ids_id_ = AddInput(segment_ids);
output_id_ = AddOutput(data.type);
SetBuiltinOp(BuiltinOperator_SEGMENT_SUM, BuiltinOptions_NONE, 0);
BuildInterpreter({GetShape(data_id_), GetShape(segment_ids_id_)});
}
int data() const { return data_id_; }
int segment_ids() const { return segment_ids_id_; }
std::vector<T> GetOutput() { return ExtractVector<T>(output_id_); }
std::vector<int32_t> GetOutputShape() { return GetTensorShape(output_id_); }
protected:
int data_id_;
int segment_ids_id_;
int output_id_;
};
TEST(SegmentSumOpModelTest, Int32Test_Simple) {
SegmentSumOpModel<int32_t> model({TensorType_INT32, {3, 4}},
{TensorType_INT32, {3}});
model.PopulateTensor<int32_t>(model.data(),
{1, 2, 3, 4, 4, 3, 2, 1, 5, 6, 7, 8});
model.PopulateTensor<int32_t>(model.segment_ids(), {0, 0, 1});
model.Invoke();
EXPECT_THAT(model.GetOutput(), ElementsAreArray({5, 5, 5, 5, 5, 6, 7, 8}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 4}));
}
TEST(SegmentSumOpModelTest, Int32Test_OneDimension) {
SegmentSumOpModel<int32_t> model({TensorType_INT32, {3}},
{TensorType_INT32, {3}});
model.PopulateTensor<int32_t>(model.data(), {1, 2, 3});
model.PopulateTensor<int32_t>(model.segment_ids(), {0, 0, 1});
model.Invoke();
EXPECT_THAT(model.GetOutput(), ElementsAreArray({3, 3}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2}));
}
TEST(SegmentSumOpModelTest, Int32Test_ThreeDimensions) {
SegmentSumOpModel<int32_t> model({TensorType_INT32, {3, 2, 1}},
{TensorType_INT32, {3}});
model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4, 5, 6});
model.PopulateTensor<int32_t>(model.segment_ids(), {0, 0, 1});
model.Invoke();
EXPECT_THAT(model.GetOutput(), ElementsAreArray({4, 6, 5, 6}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 2, 1}));
}
TEST(SegmentSumOpModelTest, Float32Test_Simple) {
SegmentSumOpModel<float> model({TensorType_FLOAT32, {3, 4}},
{TensorType_INT32, {3}});
model.PopulateTensor<float>(model.data(),
{1, 2, 3, 4, 4, 3, 2, 1, 5, 6, 7, 8});
model.PopulateTensor<int>(model.segment_ids(), {0, 0, 1});
model.Invoke();
EXPECT_THAT(model.GetOutput(), ElementsAreArray({5.0f, 5.0f, 5.0f, 5.0f, 5.0f,
6.0f, 7.0f, 8.0f}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 4}));
}
TEST(SegmentSumOpModelTest, Float32Test_OneDimension) {
SegmentSumOpModel<float> model({TensorType_FLOAT32, {3}},
{TensorType_INT32, {3}});
model.PopulateTensor<float>(model.data(), {1, 2, 3});
model.PopulateTensor<int32_t>(model.segment_ids(), {0, 0, 1});
model.Invoke();
EXPECT_THAT(model.GetOutput(), ElementsAreArray({3.0f, 3.0f}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2}));
}
TEST(SegmentSumOpModelTest, Float32Test_ThreeDimensions) {
SegmentSumOpModel<float> model({TensorType_FLOAT32, {3, 2, 1}},
{TensorType_INT32, {3}});
model.PopulateTensor<float>(model.data(), {1, 2, 3, 4, 5, 6});
model.PopulateTensor<int32_t>(model.segment_ids(), {0, 0, 1});
model.Invoke();
EXPECT_THAT(model.GetOutput(), ElementsAreArray({4.0f, 6.0f, 5.0f, 6.0f}));
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 2, 1}));
}
TEST(SegmentSumOpModelTest, TestFailIfSegmentsAreNotSorted) {
SegmentSumOpModel<int32_t> model({TensorType_INT32, {3, 2}},
{TensorType_INT32, {3}});
model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4, 5, 6});
model.PopulateTensor<int32_t>(model.segment_ids(), {0, 3, 1});
ASSERT_EQ(model.InvokeUnchecked(), kTfLiteError);
}
TEST(SegmentSumOpModelTest, TestFailIfSegmentsAreNotConsecutive) {
SegmentSumOpModel<int32_t> model({TensorType_INT32, {3, 2}},
{TensorType_INT32, {3}});
model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4, 5, 6});
model.PopulateTensor<int32_t>(model.segment_ids(), {0, 3, 5});
ASSERT_EQ(model.InvokeUnchecked(), kTfLiteError);
}
TEST(SegmentSumOpModelTest, TestFailIfSegmentsAreNegative) {
SegmentSumOpModel<int32_t> model({TensorType_INT32, {3, 2}},
{TensorType_INT32, {3}});
model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4, 5, 6});
model.PopulateTensor<int32_t>(model.segment_ids(), {-1, 0, 1});
ASSERT_EQ(model.InvokeUnchecked(), kTfLiteError);
}
TEST(SegmentSumOpModelTest, TestFailIfSegmentsAreNotTheRightCardinality) {
SegmentSumOpModel<int32_t> model({TensorType_INT32, {3, 2}},
{TensorType_INT32, {2}});
model.PopulateTensor<int32_t>(model.data(), {1, 2, 3, 4, 5, 6});
model.PopulateTensor<int32_t>(model.segment_ids(), {0, 1});
ASSERT_EQ(model.InvokeUnchecked(), kTfLiteError);
}
} // namespace
} // namespace tflite