200 lines
6.1 KiB
C++
200 lines
6.1 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <initializer_list>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/test_util.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
using ::testing::ElementsAreArray;
|
|
|
|
template <typename T>
|
|
class OneHotOpModel : public SingleOpModel {
|
|
public:
|
|
OneHotOpModel(std::initializer_list<int> input_shape, int depth_value,
|
|
TensorType dtype, int axis = -1, T on_value = 1,
|
|
T off_value = 0, TensorType indices_type = TensorType_INT32) {
|
|
indices_ = AddInput(indices_type);
|
|
int depth = AddInput(TensorType_INT32);
|
|
int on = AddInput(dtype);
|
|
int off = AddInput(dtype);
|
|
output_ = AddOutput(dtype);
|
|
SetBuiltinOp(BuiltinOperator_ONE_HOT, BuiltinOptions_OneHotOptions,
|
|
CreateOneHotOptions(builder_, axis).Union());
|
|
BuildInterpreter({input_shape});
|
|
|
|
PopulateTensor<int>(depth, {depth_value});
|
|
PopulateTensor<T>(on, {on_value});
|
|
PopulateTensor<T>(off, {off_value});
|
|
}
|
|
|
|
template <typename TI>
|
|
void SetIndices(std::initializer_list<TI> data) {
|
|
PopulateTensor<TI>(indices_, data);
|
|
}
|
|
|
|
TfLiteStatus InvokeWithResult() { return interpreter_->Invoke(); }
|
|
|
|
int32_t GetOutputSize() { return GetTensorSize(output_); }
|
|
std::vector<T> GetOutput() { return ExtractVector<T>(output_); }
|
|
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
|
|
|
|
private:
|
|
int indices_;
|
|
int output_;
|
|
};
|
|
|
|
TEST(OneHotOpTest, BasicFloat) {
|
|
const int depth = 3;
|
|
OneHotOpModel<float> model({3}, depth, TensorType_FLOAT32);
|
|
model.SetIndices({0, 1, 2});
|
|
model.Invoke();
|
|
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 3}));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({1.f, 0.f, 0.f, 0.f, 1.f, 0.f, 0.f, 0.f, 1.f}));
|
|
}
|
|
|
|
TEST(OneHotOpTest, BasicInt) {
|
|
const int depth = 3;
|
|
OneHotOpModel<int> model({3}, depth, TensorType_INT32);
|
|
model.SetIndices({0, 1, 2});
|
|
model.Invoke();
|
|
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 3}));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 0, 0, 0, 1, 0, 0, 0, 1}));
|
|
}
|
|
|
|
TEST(OneHotOpTest, BasicInt8) {
|
|
const int depth = 3;
|
|
OneHotOpModel<int8_t> model({3}, depth, TensorType_INT8);
|
|
model.SetIndices({0, 1, 2});
|
|
model.Invoke();
|
|
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 3}));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 0, 0, 0, 1, 0, 0, 0, 1}));
|
|
}
|
|
|
|
TEST(OneHotOpTest, BasicUint8) {
|
|
const int depth = 3;
|
|
OneHotOpModel<uint8_t> model({3}, depth, TensorType_UINT8);
|
|
model.SetIndices({0, 1, 2});
|
|
model.Invoke();
|
|
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 3}));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 0, 0, 0, 1, 0, 0, 0, 1}));
|
|
}
|
|
|
|
TEST(OneHotOpTest, BasicBool) {
|
|
const int depth = 3;
|
|
OneHotOpModel<bool> model({3}, depth, TensorType_BOOL);
|
|
model.SetIndices({0, 1, 2});
|
|
model.Invoke();
|
|
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 3}));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({true, false, false, false, true, false, false,
|
|
false, true}));
|
|
}
|
|
|
|
TEST(OneHotOpTest, SmallDepth) {
|
|
const int depth = 1;
|
|
OneHotOpModel<int> model({3}, depth, TensorType_INT32);
|
|
model.SetIndices({0, 1, 2});
|
|
model.Invoke();
|
|
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 1}));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 0, 0}));
|
|
}
|
|
|
|
TEST(OneHotOpTest, BigDepth) {
|
|
const int depth = 4;
|
|
OneHotOpModel<int> model({2}, depth, TensorType_INT32);
|
|
model.SetIndices({0, 1});
|
|
model.Invoke();
|
|
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 4}));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 0, 0, 0, 0, 1, 0, 0}));
|
|
}
|
|
|
|
TEST(OneHotOpTest, OnOffValues) {
|
|
const int depth = 3;
|
|
const int axis = -1;
|
|
const int on = 5;
|
|
const int off = 0;
|
|
OneHotOpModel<int> model({4}, depth, TensorType_INT32, axis, on, off);
|
|
model.SetIndices({0, 2, -1, 1});
|
|
model.Invoke();
|
|
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({4, 3}));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({5, 0, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0}));
|
|
}
|
|
|
|
TEST(OneHotOpTest, ZeroAxis) {
|
|
const int depth = 3;
|
|
const int axis = 0;
|
|
const int on = 5;
|
|
const int off = 0;
|
|
OneHotOpModel<int> model({4}, depth, TensorType_INT32, axis, on, off);
|
|
model.SetIndices({0, 2, -1, 1});
|
|
model.Invoke();
|
|
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 4}));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({5, 0, 0, 0, 0, 0, 0, 5, 0, 5, 0, 0}));
|
|
}
|
|
|
|
TEST(OneHotOpTest, MultiDimensionalIndices) {
|
|
const int depth = 3;
|
|
const int axis = -1;
|
|
const float on = 2;
|
|
const float off = 0;
|
|
OneHotOpModel<float> model({2, 2}, depth, TensorType_FLOAT32, axis, on, off);
|
|
model.SetIndices({0, 2, 1, -1});
|
|
model.Invoke();
|
|
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({2, 2, 3}));
|
|
EXPECT_THAT(model.GetOutput(),
|
|
ElementsAreArray({2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0}));
|
|
}
|
|
|
|
TEST(OneHotOpTest, Int64Indices) {
|
|
const int depth = 3;
|
|
const int axis = -1;
|
|
const int on = 1;
|
|
const int off = 0;
|
|
OneHotOpModel<int> model({3}, depth, TensorType_INT32, axis, on, off,
|
|
TensorType_INT64);
|
|
std::initializer_list<int64_t> indices = {0, 1, 2};
|
|
model.SetIndices(indices);
|
|
model.Invoke();
|
|
|
|
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({3, 3}));
|
|
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 0, 0, 0, 1, 0, 0, 0, 1}));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|