STT-tensorflow/tensorflow/lite/kernels/mirror_pad.cc
Mihai Maruseac 1970c2158b [tflite]: Insert nullptr checks when obtaining tensors.
As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages.

We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`).

PiperOrigin-RevId: 332521299
Change-Id: I29af455bcb48d0b92e58132d951a3badbd772d56
2020-09-18 14:13:50 -07:00

297 lines
11 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <memory>
#include <vector>
#include "ruy/profiler/instrumentation.h" // from @ruy
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/cpu_backend_context.h"
#include "tensorflow/lite/kernels/cpu_backend_threadpool.h"
#include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
namespace tflite {
namespace ops {
namespace builtin {
namespace mirror_pad {
namespace {
// Nil value for paddingMode/offset.
const int kUnsetOffset = -1;
// Wrapper for params passed to the Eval<T> function.
template <typename T>
struct EvalData {
const TfLiteTensor* padding_matrix = nullptr;
const TfLiteIntArray* input_dims = nullptr;
// Holds number of elements at the nth dimension.
// value at last dimension = 1, at second to last = sizeof last dimension.
const std::vector<int>* output_dims_num_elements = nullptr;
const std::vector<int>* input_dims_num_elements = nullptr;
const T* input_data = nullptr;
int offset = kUnsetOffset;
T* output_data = nullptr;
int num_dims = 0;
};
// Helper method that fills the left and right pads.
template <typename T>
inline void GetPadding(const T* data, int offset, int64_t* left_pad,
int64_t* right_pad) {
*left_pad = static_cast<int64_t>(*(data + offset * 2));
*right_pad = static_cast<int64_t>(*(data + offset * 2 + 1));
}
inline void GetPadding(const TfLiteTensor* padding_matrix, int dimension,
int64_t* left_pad, int64_t* right_pad) {
switch (padding_matrix->type) {
case kTfLiteInt32:
GetPadding(padding_matrix->data.i32, dimension, left_pad, right_pad);
break;
case kTfLiteInt64:
GetPadding(padding_matrix->data.i64, dimension, left_pad, right_pad);
break;
default:
return;
}
}
// Returns the shape of the final output after padding.
std::unique_ptr<TfLiteIntArray, void (*)(TfLiteIntArray*)> GetPaddedOutputShape(
const TfLiteTensor* input, const TfLiteTensor* padding_matrix) {
const int input_dims = NumDimensions(input);
std::unique_ptr<TfLiteIntArray, void (*)(TfLiteIntArray*)> shape(
TfLiteIntArrayCreate(input_dims), TfLiteIntArrayFree);
int64_t left_pad = 0, right_pad = 0;
for (int i = 0; i < input_dims; ++i) {
GetPadding(padding_matrix, i, &left_pad, &right_pad);
shape->data[i] = SizeOfDimension(input, i) + left_pad + right_pad;
}
return shape;
}
// Given dimension index and the left/right padding.
// Returns the corresponding dimension in the input array.
inline int GetInputDimension(int padded_dimension, int left_pad, int right_pad,
int input_dim_size, int offset) {
if (padded_dimension < left_pad) {
const int original_ind = left_pad + offset - 1;
return original_ind - (std::min(padded_dimension, original_ind - offset));
}
padded_dimension -= left_pad;
if (padded_dimension >= input_dim_size) {
padded_dimension -= input_dim_size;
const int original_ind = input_dim_size - (1 + offset);
return original_ind - std::min(padded_dimension, original_ind);
}
return padded_dimension;
}
// Given and index in output array, returns the index of the value
// in input array.
template <typename T>
int GetFlatIndex(int index, EvalData<T>* eval_data) {
int flat_index = 0;
int64_t left_pad = 0, right_pad = 0, dimension_index, index_in_input;
for (int i = 0; i < eval_data->num_dims; ++i) {
switch (eval_data->padding_matrix->type) {
case kTfLiteInt32:
GetPadding(eval_data->padding_matrix->data.i32, i, &left_pad,
&right_pad);
break;
case kTfLiteInt64:
GetPadding(eval_data->padding_matrix->data.i64, i, &left_pad,
&right_pad);
break;
default:
break;
}
dimension_index = index / (*eval_data->output_dims_num_elements)[i];
index_in_input =
GetInputDimension(dimension_index, left_pad, right_pad,
eval_data->input_dims->data[i], eval_data->offset);
flat_index += index_in_input * (*eval_data->input_dims_num_elements)[i];
index %= (*eval_data->output_dims_num_elements)[i];
}
return flat_index;
}
template <typename T>
struct MirrorPadWorkerTask : cpu_backend_threadpool::Task {
MirrorPadWorkerTask(EvalData<T>* eval_data, int start, int end)
: eval_data(eval_data), start(start), end(end) {}
void Run() override {
auto* input_data = eval_data->input_data;
auto* output_data = eval_data->output_data;
for (int i = start; i < end; ++i) {
output_data[i] = input_data[GetFlatIndex(i, eval_data)];
}
}
private:
EvalData<T>* eval_data;
int start;
int end;
};
} // namespace
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
ruy::profiler::ScopeLabel label("MirrorPad");
const TfLiteTensor* input_tensor;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input_tensor));
const TfLiteTensor* padding_matrix;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &padding_matrix));
auto* params =
reinterpret_cast<TfLiteMirrorPaddingParams*>(node->builtin_data);
if (params == nullptr) {
return kTfLiteError;
}
const int input_dims = NumDimensions(input_tensor);
TfLiteTensor* output_tensor;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output_tensor));
if (IsDynamicTensor(output_tensor)) {
auto output_size = GetPaddedOutputShape(input_tensor, padding_matrix);
if (output_size == nullptr) {
return kTfLiteError;
}
TF_LITE_ENSURE_STATUS(
context->ResizeTensor(context, output_tensor, output_size.release()));
}
std::vector<int> output_dims_num_elements(input_dims, 1);
std::vector<int> input_dims_num_elements(input_dims, 1);
for (int i = input_dims - 2; i >= 0; i--) {
output_dims_num_elements[i] =
output_dims_num_elements[i + 1] * output_tensor->dims->data[i + 1];
input_dims_num_elements[i] =
input_dims_num_elements[i + 1] * input_tensor->dims->data[i + 1];
}
const int offset =
params->mode != TfLiteMirrorPaddingMode::kTfLiteMirrorPaddingReflect ? 0
: 1;
CpuBackendContext* cpu_backend_context =
CpuBackendContext::GetFromContext(context);
const int thread_count = cpu_backend_context->max_num_threads();
TfLiteStatus status = kTfLiteOk;
const int output_size = NumElements(output_tensor);
#define TF_LITE_MIRROR_PAD(type) \
EvalData<type> eval_data; \
eval_data.input_data = GetTensorData<type>(input_tensor); \
eval_data.input_dims = input_tensor->dims; \
eval_data.input_dims = input_tensor->dims; \
eval_data.output_dims_num_elements = &output_dims_num_elements; \
eval_data.input_dims_num_elements = &input_dims_num_elements; \
eval_data.num_dims = input_dims; \
eval_data.offset = offset; \
eval_data.output_data = GetTensorData<type>(output_tensor); \
eval_data.padding_matrix = padding_matrix; \
std::vector<MirrorPadWorkerTask<type>> tasks; \
tasks.reserve(thread_count); \
int start = 0; \
for (int i = 0; i < thread_count; ++i) { \
int end = start + (output_size - start) / (thread_count - i); \
tasks.emplace_back(MirrorPadWorkerTask<type>(&eval_data, start, end)); \
start = end; \
} \
cpu_backend_threadpool::Execute(tasks.size(), tasks.data(), \
cpu_backend_context);
switch (output_tensor->type) {
case kTfLiteFloat32: {
TF_LITE_MIRROR_PAD(float);
break;
}
case kTfLiteInt32: {
TF_LITE_MIRROR_PAD(int32_t);
break;
}
case kTfLiteUInt8: {
TF_LITE_MIRROR_PAD(uint8_t);
break;
}
case kTfLiteInt8: {
TF_LITE_MIRROR_PAD(int8_t);
break;
}
case kTfLiteInt64: {
TF_LITE_MIRROR_PAD(int64_t);
break;
}
default:
status = kTfLiteError;
break;
}
#undef TF_LITE_MIRROR_PAD
return status;
}
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
return nullptr;
}
void Free(TfLiteContext* context, void* buffer) {}
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input_tensor;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &input_tensor));
const TfLiteTensor* padding_matrix;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &padding_matrix));
TfLiteTensor* output_tensor;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output_tensor));
TF_LITE_ENSURE_EQ(context, NumDimensions(padding_matrix), 2);
TF_LITE_ENSURE_EQ(context, SizeOfDimension(padding_matrix, 0),
NumDimensions(input_tensor));
if (!IsConstantTensor(padding_matrix)) {
SetTensorToDynamic(output_tensor);
return kTfLiteOk;
}
// We have constant padding, so we can infer output size.
auto output_size = GetPaddedOutputShape(input_tensor, padding_matrix);
if (output_size == nullptr) {
return kTfLiteError;
}
return context->ResizeTensor(context, output_tensor, output_size.release());
}
} // namespace mirror_pad
TfLiteRegistration* Register_MIRROR_PAD() {
static TfLiteRegistration r = {mirror_pad::Init, mirror_pad::Free,
mirror_pad::Prepare, mirror_pad::Eval};
return &r;
}
} // namespace builtin
} // namespace ops
} // namespace tflite