STT-tensorflow/tensorflow/lite/kernels/maximum_minimum_test.cc
Stefano Galarraga 051d1b70f5 Fix NNAPI delegation error on models with MAX/MIN operations with scalar quantized operators
PiperOrigin-RevId: 317266736
Change-Id: Ieed8a77685d4ca0d51389b5976addf0de167cfcf
2020-06-19 01:26:04 -07:00

246 lines
11 KiB
C++

/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <initializer_list>
#include <memory>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
template <class T>
class MaxMinOpModel : public SingleOpModel {
public:
MaxMinOpModel(tflite::BuiltinOperator op, const TensorData& input1,
const TensorData& input2, const TensorType& output) {
input1_ = AddInput(input1);
input2_ = AddInput(input2);
output_ = AddOutput(output);
SetBuiltinOp(op, BuiltinOptions_MaximumMinimumOptions,
CreateMaximumMinimumOptions(builder_).Union());
BuildInterpreter({GetShape(input1_), GetShape(input2_)});
}
MaxMinOpModel(tflite::BuiltinOperator op, const TensorData& input1,
std::initializer_list<T> input1_values,
const TensorData& input2,
std::initializer_list<T> input2_values,
const TensorType& output) {
input1_ = AddConstInput<T>(input1, input1_values);
input2_ = AddConstInput<T>(input2, input2_values);
output_ = AddOutput(output);
SetBuiltinOp(op, BuiltinOptions_MaximumMinimumOptions,
CreateMaximumMinimumOptions(builder_).Union());
BuildInterpreter({GetShape(input1_), GetShape(input2_)});
}
void SetInput1(std::initializer_list<T> data) {
PopulateTensor(input1_, data);
}
void SetInput2(std::initializer_list<T> data) {
PopulateTensor(input2_, data);
}
std::vector<T> GetOutput() { return ExtractVector<T>(output_); }
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
protected:
int input1_;
int input2_;
int output_;
};
template <typename data_type>
void TestModel(tflite::BuiltinOperator op, const TensorData& input1,
const TensorData& input2, const TensorData& output,
std::initializer_list<data_type> input1_values,
std::initializer_list<data_type> input2_values,
std::initializer_list<data_type> output_values,
int is_constant = false) {
std::unique_ptr<MaxMinOpModel<data_type>> m;
if (is_constant) {
m = std::make_unique<MaxMinOpModel<data_type>>(
op, input1, input1_values, input2, input2_values, output.type);
} else {
m = std::make_unique<MaxMinOpModel<data_type>>(op, input1, input2,
output.type);
m->SetInput1(input1_values);
m->SetInput2(input2_values);
}
m->Invoke();
EXPECT_THAT(m->GetOutputShape(), ElementsAreArray(output.shape));
EXPECT_THAT(m->GetOutput(), ElementsAreArray(output_values));
}
TEST(MaximumOpTest, FloatTest) {
std::initializer_list<float> data1 = {1.0, 0.0, -1.0, 11.0, -2.0, -1.44};
std::initializer_list<float> data2 = {-1.0, 0.0, 1.0, 12.0, -3.0, -1.43};
TestModel<float>(BuiltinOperator_MAXIMUM, {TensorType_FLOAT32, {3, 1, 2}},
{TensorType_FLOAT32, {3, 1, 2}},
{TensorType_FLOAT32, {3, 1, 2}}, data1, data2,
{1.0, 0.0, 1.0, 12.0, -2.0, -1.43});
TestModel<float>(BuiltinOperator_MINIMUM, {TensorType_FLOAT32, {3, 1, 2}},
{TensorType_FLOAT32, {3, 1, 2}},
{TensorType_FLOAT32, {3, 1, 2}}, data1, data2,
{-1.0, 0.0, -1.0, 11.0, -3.0, -1.44});
}
TEST(MaxMinOpTest, Uint8Test) {
std::initializer_list<uint8_t> data1 = {1, 0, 2, 11, 2, 23};
std::initializer_list<uint8_t> data2 = {0, 0, 1, 12, 255, 1};
TestModel<uint8_t>(BuiltinOperator_MAXIMUM, {TensorType_UINT8, {3, 1, 2}},
{TensorType_UINT8, {3, 1, 2}},
{TensorType_UINT8, {3, 1, 2}}, data1, data2,
{1, 0, 2, 12, 255, 23});
TestModel<uint8_t>(BuiltinOperator_MINIMUM, {TensorType_UINT8, {3, 1, 2}},
{TensorType_UINT8, {3, 1, 2}},
{TensorType_UINT8, {3, 1, 2}}, data1, data2,
{0, 0, 1, 11, 2, 1});
}
TEST(MaxMinOpTest, Int8Test) {
std::initializer_list<int8_t> data1 = {1, 0, 2, 11, 2, 23};
std::initializer_list<int8_t> data2 = {0, 0, 1, 12, 123, 1};
TestModel<int8_t>(BuiltinOperator_MAXIMUM, {TensorType_INT8, {3, 1, 2}},
{TensorType_INT8, {3, 1, 2}}, {TensorType_INT8, {3, 1, 2}},
data1, data2, {1, 0, 2, 12, 123, 23});
TestModel<int8_t>(BuiltinOperator_MINIMUM, {TensorType_INT8, {3, 1, 2}},
{TensorType_INT8, {3, 1, 2}}, {TensorType_INT8, {3, 1, 2}},
data1, data2, {0, 0, 1, 11, 2, 1});
}
TEST(MaxMinOpTest, Int16Test) {
std::initializer_list<int16_t> data1 = {-32768, 0, 2, 11, 2, 23};
std::initializer_list<int16_t> data2 = {0, 0, 1, 32767, 123, 1};
TestModel<int16_t>(BuiltinOperator_MAXIMUM, {TensorType_INT16, {3, 1, 2}},
{TensorType_INT16, {3, 1, 2}},
{TensorType_INT16, {3, 1, 2}}, data1, data2,
{0, 0, 2, 32767, 123, 23});
TestModel<int16_t>(BuiltinOperator_MINIMUM, {TensorType_INT16, {3, 1, 2}},
{TensorType_INT16, {3, 1, 2}},
{TensorType_INT16, {3, 1, 2}}, data1, data2,
{-32768, 0, 1, 11, 2, 1});
}
TEST(MaximumOpTest, FloatWithBroadcastTest) {
std::initializer_list<float> data1 = {1.0, 0.0, -1.0, -2.0, -1.44, 11.0};
std::initializer_list<float> data2 = {0.5, 2.0};
TestModel<float>(BuiltinOperator_MAXIMUM, {TensorType_FLOAT32, {3, 1, 2}},
{TensorType_FLOAT32, {2}}, {TensorType_FLOAT32, {3, 1, 2}},
data1, data2, {1.0, 2.0, 0.5, 2.0, 0.5, 11.0});
TestModel<float>(BuiltinOperator_MINIMUM, {TensorType_FLOAT32, {3, 1, 2}},
{TensorType_FLOAT32, {2}}, {TensorType_FLOAT32, {3, 1, 2}},
data1, data2, {0.5, 0.0, -1.0, -2.0, -1.44, 2.0});
}
TEST(MaximumOpTest, FloatWithBroadcastTest_ScalarY) {
std::initializer_list<float> data1 = {1.0, 0.0, -1.0, -2.0, -1.44, 11.0};
std::initializer_list<float> data2 = {0.5};
TestModel<float>(BuiltinOperator_MAXIMUM, {TensorType_FLOAT32, {3, 1, 2}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {3, 1, 2}},
data1, data2, {1.0, 0.5, 0.5, 0.5, 0.5, 11.0},
/*is_constant=*/true);
TestModel<float>(BuiltinOperator_MINIMUM, {TensorType_FLOAT32, {3, 1, 2}},
{TensorType_FLOAT32, {}}, {TensorType_FLOAT32, {3, 1, 2}},
data1, data2, {0.5, 0.0, -1.0, -2.0, -1.44, 0.5},
/*is_constant=*/true);
}
TEST(MaximumOpTest, Int32WithBroadcastTest) {
std::initializer_list<int32_t> data1 = {1, 0, -1, -2, 3, 11};
std::initializer_list<int32_t> data2 = {2};
TestModel<int32_t>(BuiltinOperator_MAXIMUM, {TensorType_INT32, {3, 1, 2}},
{TensorType_INT32, {1}}, {TensorType_INT32, {3, 1, 2}},
data1, data2, {2, 2, 2, 2, 3, 11});
TestModel<int32_t>(BuiltinOperator_MINIMUM, {TensorType_INT32, {3, 1, 2}},
{TensorType_INT32, {1}}, {TensorType_INT32, {3, 1, 2}},
data1, data2, {1, 0, -1, -2, 2, 2});
}
TEST(MaximumOpTest, Int32WithBroadcastTest_ScalarY) {
std::initializer_list<int32_t> data1 = {1, 0, -1, -2, 3, 11};
std::initializer_list<int32_t> data2 = {2};
TestModel<int32_t>(BuiltinOperator_MAXIMUM, {TensorType_INT32, {3, 1, 2}},
{TensorType_INT32, {}}, {TensorType_INT32, {3, 1, 2}},
data1, data2, {2, 2, 2, 2, 3, 11}, /*is_constant=*/true);
TestModel<int32_t>(BuiltinOperator_MINIMUM, {TensorType_INT32, {3, 1, 2}},
{TensorType_INT32, {}}, {TensorType_INT32, {3, 1, 2}},
data1, data2, {1, 0, -1, -2, 2, 2}, /*is_constant=*/true);
}
TEST(MaximumOpTest, Int8WithBroadcastTest_ScalarY) {
std::initializer_list<int8_t> data1 = {1, 0, -1, -2, 3, 11};
std::initializer_list<int8_t> data2 = {2};
TestModel<int8_t>(BuiltinOperator_MAXIMUM, {TensorType_INT8, {3, 1, 2}},
{TensorType_INT8, {}}, {TensorType_INT8, {3, 1, 2}}, data1,
data2, {2, 2, 2, 2, 3, 11}, /*is_constant=*/true);
TestModel<int8_t>(BuiltinOperator_MINIMUM, {TensorType_INT8, {3, 1, 2}},
{TensorType_INT8, {}}, {TensorType_INT8, {3, 1, 2}}, data1,
data2, {1, 0, -1, -2, 2, 2}, /*is_constant=*/true);
}
TEST(MaxMinOpTest, Int8Test8D) {
std::initializer_list<int8_t> data1 = {1, 0, 2, 11, 2, 23};
std::initializer_list<int8_t> data2 = {0, 0, 1, 12, 123, 1};
TestModel<int8_t>(BuiltinOperator_MAXIMUM,
{TensorType_INT8, {3, 1, 2, 1, 1, 1, 1, 1}},
{TensorType_INT8, {3, 1, 2, 1, 1, 1, 1, 1}},
{TensorType_INT8, {3, 1, 2, 1, 1, 1, 1, 1}}, data1, data2,
{1, 0, 2, 12, 123, 23});
TestModel<int8_t>(BuiltinOperator_MINIMUM,
{TensorType_INT8, {3, 1, 2, 1, 1, 1, 1, 1}},
{TensorType_INT8, {3, 1, 2, 1, 1, 1, 1, 1}},
{TensorType_INT8, {3, 1, 2, 1, 1, 1, 1, 1}}, data1, data2,
{0, 0, 1, 11, 2, 1});
}
TEST(MaximumOpTest, FloatWithBroadcastTest5D) {
std::initializer_list<float> data1 = {1.0, 0.0, -1.0, -2.0, -1.44, 11.0};
std::initializer_list<float> data2 = {0.5, 2.0};
TestModel<float>(
BuiltinOperator_MAXIMUM, {TensorType_FLOAT32, {3, 1, 1, 1, 2}},
{TensorType_FLOAT32, {2}}, {TensorType_FLOAT32, {3, 1, 1, 1, 2}}, data1,
data2, {1.0, 2.0, 0.5, 2.0, 0.5, 11.0});
TestModel<float>(
BuiltinOperator_MINIMUM, {TensorType_FLOAT32, {3, 1, 1, 1, 2}},
{TensorType_FLOAT32, {2}}, {TensorType_FLOAT32, {3, 1, 1, 1, 2}}, data1,
data2, {0.5, 0.0, -1.0, -2.0, -1.44, 2.0});
}
TEST(MaximumOpTest, Int32WithBroadcastTest5D) {
std::initializer_list<int32_t> data1 = {1, 0, -1, -2, 3, 11};
std::initializer_list<int32_t> data2 = {2};
TestModel<int32_t>(
BuiltinOperator_MAXIMUM, {TensorType_INT32, {3, 1, 2, 1, 1}},
{TensorType_INT32, {1}}, {TensorType_INT32, {3, 1, 2, 1, 1}}, data1,
data2, {2, 2, 2, 2, 3, 11});
TestModel<int32_t>(
BuiltinOperator_MINIMUM, {TensorType_INT32, {3, 1, 2, 1, 1}},
{TensorType_INT32, {1}}, {TensorType_INT32, {3, 1, 2, 1, 1}}, data1,
data2, {1, 0, -1, -2, 2, 2});
}
} // namespace
} // namespace tflite