STT-tensorflow/tensorflow/lite/kernels/matrix_set_diag_test.cc
Karim Nosir 2a96849f47 Update source files with used includes.
PiperOrigin-RevId: 316589177
Change-Id: I0aba0ed1cf9ff478e7890fa53a7749bf844bd26d
2020-06-15 18:42:14 -07:00

133 lines
5.4 KiB
C++

/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <memory>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
template <typename T>
class MatrixSetDiagOpModel : public SingleOpModel {
public:
explicit MatrixSetDiagOpModel(const TensorData& input,
const TensorData& diag) {
input_ = AddInput(input);
diag_ = AddInput(diag);
output_ = AddOutput({input.type, {}});
SetBuiltinOp(BuiltinOperator_MATRIX_SET_DIAG,
BuiltinOptions_MatrixSetDiagOptions,
CreateMatrixSetDiagOptions(builder_).Union());
BuildInterpreter({GetShape(input_), GetShape(diag_)});
}
int input() { return input_; }
int diag() { return diag_; }
std::vector<T> GetOutput() { return ExtractVector<T>(output_); }
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
TfLiteType GetOutputType() {
TfLiteTensor* t = interpreter_->tensor(output_);
return t->type;
}
private:
int input_;
int diag_;
int output_;
};
// Use the machinery of TYPED_TEST_SUITE to test all supported types.
// See
// https://github.com/google/googletest/blob/master/googletest/docs/advanced.md#typed-tests
// for details.
template <typename T>
class MatrixSetDiagOpTest : public ::testing::Test {};
using TypesUnderTest =
::testing::Types<TypeUnion<int32_t>, TypeUnion<float>, TypeUnion<int16_t>,
TypeUnion<int8_t>, TypeUnion<uint8_t>>;
TYPED_TEST_SUITE(MatrixSetDiagOpTest, TypesUnderTest);
TYPED_TEST(MatrixSetDiagOpTest, ThreeByThreeDiagScatter) {
MatrixSetDiagOpModel<typename TypeParam::ScalarType> model(
{TypeParam::tensor_type, {3, 3}}, {TypeParam::tensor_type, {3}});
model.template PopulateTensor<typename TypeParam::ScalarType>(model.input(),
{7, 1, 2, //
3, 8, 4, //
5, 6, 9});
model.template PopulateTensor<typename TypeParam::ScalarType>(model.diag(),
{0, 4, 2});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(3, 3));
EXPECT_THAT(model.GetOutput(), ElementsAreArray({0, 1, 2, //
3, 4, 4, //
5, 6, 2}));
EXPECT_THAT(model.GetOutputType(), TypeParam::tflite_type);
}
TEST(MatrixSetDiagTest, Int32TestMoreColumnsThanRows) {
MatrixSetDiagOpModel<int32_t> model({TensorType_INT32, {2, 3}},
{TensorType_INT32, {2}});
model.PopulateTensor<int32_t>(model.input(), {0, 0, 0, //
9, 9, 9});
model.PopulateTensor<int32_t>(model.diag(), {1, 1});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 3));
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 0, 0, //
9, 1, 9}));
EXPECT_THAT(model.GetOutputType(), TfLiteType::kTfLiteInt32);
}
TEST(MatrixSetDiagTest, Int32TestTwoDimDiag) {
MatrixSetDiagOpModel<int32_t> model({TensorType_INT32, {2, 4, 4}},
{TensorType_INT32, {2, 4}});
model.PopulateTensor<int32_t>(model.input(), {5, 5, 5, 5, //
5, 5, 5, 5, //
5, 5, 5, 5, //
5, 5, 5, 5, //
1, 1, 1, 1, //
1, 1, 1, 1, //
1, 1, 1, 1, //
1, 1, 1, 1});
model.PopulateTensor<int32_t>(model.diag(), {1, 2, 3, 4, 5, 6, 7, 8});
model.Invoke();
EXPECT_THAT(model.GetOutputShape(), ElementsAre(2, 4, 4));
EXPECT_THAT(model.GetOutput(), ElementsAreArray({1, 5, 5, 5, //
5, 2, 5, 5, //
5, 5, 3, 5, //
5, 5, 5, 4, //
5, 1, 1, 1, //
1, 6, 1, 1, //
1, 1, 7, 1, //
1, 1, 1, 8}));
EXPECT_THAT(model.GetOutputType(), TfLiteType::kTfLiteInt32);
}
} // namespace
} // namespace tflite