109 lines
4.0 KiB
C++
109 lines
4.0 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "tensorflow/lite/interpreter.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/subgraph_test_util.h"
|
|
|
|
namespace tflite {
|
|
|
|
using subgraph_test_util::CheckIntTensor;
|
|
using subgraph_test_util::ControlFlowOpTest;
|
|
using subgraph_test_util::FillIntTensor;
|
|
|
|
namespace {
|
|
|
|
// A simple test that performs `ADD` if condition is true, and `MUL` otherwise.
|
|
// The computation is: `cond ? a + b : a * b`.
|
|
class SimpleIfTest : public ControlFlowOpTest {
|
|
protected:
|
|
void SetUp() override {
|
|
interpreter_->AddSubgraphs(2);
|
|
builder_->BuildAddSubgraph(interpreter_->subgraph(1));
|
|
builder_->BuildMulSubgraph(interpreter_->subgraph(2));
|
|
builder_->BuildIfSubgraph(&interpreter_->primary_subgraph());
|
|
|
|
interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1});
|
|
interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {2});
|
|
interpreter_->ResizeInputTensor(interpreter_->inputs()[2], {1, 2});
|
|
ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk);
|
|
|
|
FillIntTensor(interpreter_->tensor(interpreter_->inputs()[1]), {5, 7});
|
|
FillIntTensor(interpreter_->tensor(interpreter_->inputs()[2]), {1, 2});
|
|
}
|
|
};
|
|
|
|
TEST_F(SimpleIfTest, TestIfTrue) {
|
|
interpreter_->typed_input_tensor<bool>(0)[0] = true;
|
|
ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk);
|
|
TfLiteTensor* output = interpreter_->tensor(interpreter_->outputs()[0]);
|
|
CheckIntTensor(output, {1, 2}, {6, 9});
|
|
}
|
|
|
|
TEST_F(SimpleIfTest, TestIfFalse) {
|
|
interpreter_->typed_input_tensor<bool>(0)[0] = false;
|
|
ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk);
|
|
TfLiteTensor* output = interpreter_->tensor(interpreter_->outputs()[0]);
|
|
CheckIntTensor(output, {1, 2}, {5, 14});
|
|
}
|
|
|
|
// Test IF op using subgraphs with dynamically sized outputs.
|
|
// The computation is: `cond ? a + b : pad(a, b)`.
|
|
class DynamicSubgraphIfTest : public ControlFlowOpTest {
|
|
protected:
|
|
void SetUp() override {
|
|
interpreter_->AddSubgraphs(2);
|
|
builder_->BuildAddSubgraph(interpreter_->subgraph(1));
|
|
builder_->BuildPadSubgraph(interpreter_->subgraph(2));
|
|
builder_->BuildIfSubgraph(&interpreter_->primary_subgraph());
|
|
|
|
interpreter_->ResizeInputTensor(interpreter_->inputs()[0], {1});
|
|
interpreter_->ResizeInputTensor(interpreter_->inputs()[1], {2});
|
|
interpreter_->ResizeInputTensor(interpreter_->inputs()[2], {1, 2});
|
|
ASSERT_EQ(interpreter_->AllocateTensors(), kTfLiteOk);
|
|
|
|
FillIntTensor(interpreter_->tensor(interpreter_->inputs()[1]), {5, 7});
|
|
FillIntTensor(interpreter_->tensor(interpreter_->inputs()[2]), {1, 2});
|
|
}
|
|
};
|
|
|
|
TEST_F(DynamicSubgraphIfTest, TestIfTrue) {
|
|
interpreter_->typed_input_tensor<bool>(0)[0] = true;
|
|
ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk);
|
|
TfLiteTensor* output = interpreter_->tensor(interpreter_->outputs()[0]);
|
|
// Even if the true branch has a static type output, the output of the
|
|
// if op is dynamic because the other branch has dynamic output.
|
|
EXPECT_TRUE(IsDynamicTensor(output));
|
|
CheckIntTensor(output, {1, 2}, {6, 9});
|
|
}
|
|
|
|
TEST_F(DynamicSubgraphIfTest, TestIfFalse) {
|
|
interpreter_->typed_input_tensor<bool>(0)[0] = false;
|
|
ASSERT_EQ(interpreter_->Invoke(), kTfLiteOk);
|
|
TfLiteTensor* output = interpreter_->tensor(interpreter_->outputs()[0]);
|
|
// The false branch has dynamic output.
|
|
EXPECT_TRUE(IsDynamicTensor(output));
|
|
CheckIntTensor(output, {5}, {0, 5, 7, 0, 0});
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace tflite
|