STT-tensorflow/tensorflow/lite/kernels/cast_test.cc
A. Unique TensorFlower 62e391cc6c Support casting to int16.
PiperOrigin-RevId: 350114031
Change-Id: Id7c3f6d172ae4430ee7eb968d8e2d1b9fd1956a7
2021-01-05 04:19:42 -08:00

220 lines
8.4 KiB
C++

/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdint.h>
#include <complex>
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
#include "tensorflow/lite/kernels/test_util.h"
#include "tensorflow/lite/schema/schema_generated.h"
namespace tflite {
namespace {
using ::testing::ElementsAreArray;
class CastOpModel : public SingleOpModel {
public:
CastOpModel(const TensorData& input, const TensorData& output) {
input_ = AddInput(input);
output_ = AddOutput(output);
SetBuiltinOp(BuiltinOperator_CAST, BuiltinOptions_CastOptions,
CreateCastOptions(builder_).Union());
BuildInterpreter({GetShape(input_)});
}
int input() const { return input_; }
int output() const { return output_; }
protected:
int input_;
int output_;
};
TEST(CastOpModel, CastInt16ToFloat) {
CastOpModel m({TensorType_INT16, {2, 3}}, {TensorType_FLOAT32, {2, 3}});
m.PopulateTensor<int16_t>(m.input(), {100, 200, 300, 400, 500, 600});
m.Invoke();
EXPECT_THAT(m.ExtractVector<float>(m.output()),
ElementsAreArray({100.f, 200.f, 300.f, 400.f, 500.f, 600.f}));
}
TEST(CastOpModel, CastInt16ToInt32) {
CastOpModel m({TensorType_INT16, {2, 3}}, {TensorType_INT32, {2, 3}});
m.PopulateTensor<int16_t>(m.input(), {100, 200, 300, 400, 500, 600});
m.Invoke();
EXPECT_THAT(m.ExtractVector<int32_t>(m.output()),
ElementsAreArray({100, 200, 300, 400, 500, 600}));
}
TEST(CastOpModel, CastInt32ToFloat) {
CastOpModel m({TensorType_INT32, {2, 3}}, {TensorType_FLOAT32, {2, 3}});
m.PopulateTensor<int32_t>(m.input(), {100, 200, 300, 400, 500, 600});
m.Invoke();
EXPECT_THAT(m.ExtractVector<float>(m.output()),
ElementsAreArray({100.f, 200.f, 300.f, 400.f, 500.f, 600.f}));
}
TEST(CastOpModel, CastFloatToInt32) {
CastOpModel m({TensorType_FLOAT32, {3, 2}}, {TensorType_INT32, {3, 2}});
m.PopulateTensor<float>(m.input(), {100.f, 20.f, 3.f, 0.4f, 0.999f, 1.1f});
m.Invoke();
EXPECT_THAT(m.ExtractVector<int32_t>(m.output()),
ElementsAreArray({100, 20, 3, 0, 0, 1}));
}
TEST(CastOpModel, CastFloatToInt16) {
CastOpModel m({TensorType_FLOAT32, {3, 2}}, {TensorType_INT16, {3, 2}});
m.PopulateTensor<float>(m.input(), {100.f, 20.f, 3.f, 0.4f, 0.999f, 1.1f});
m.Invoke();
EXPECT_THAT(m.ExtractVector<int16_t>(m.output()),
ElementsAreArray({100, 20, 3, 0, 0, 1}));
}
TEST(CastOpModel, CastInt64ToFloat) {
CastOpModel m({TensorType_INT64, {2, 3}}, {TensorType_FLOAT32, {2, 3}});
m.PopulateTensor<int64_t>(m.input(), {100, 200, 300, 400, 500, 600});
m.Invoke();
EXPECT_THAT(m.ExtractVector<float>(m.output()),
ElementsAreArray({100.f, 200.f, 300.f, 400.f, 500.f, 600.f}));
}
TEST(CastOpModel, CastFloatToInt64) {
CastOpModel m({TensorType_FLOAT32, {3, 2}}, {TensorType_INT64, {3, 2}});
m.PopulateTensor<float>(m.input(), {100.f, 20.f, 3.f, 0.4f, 0.999f, 1.1f});
m.Invoke();
EXPECT_THAT(m.ExtractVector<int64_t>(m.output()),
ElementsAreArray({100, 20, 3, 0, 0, 1}));
}
TEST(CastOpModel, CastFloatToBool) {
CastOpModel m({TensorType_FLOAT32, {3, 2}}, {TensorType_BOOL, {3, 2}});
m.PopulateTensor<float>(m.input(), {100.f, -1.0f, 0.f, 0.4f, 0.999f, 1.1f});
m.Invoke();
EXPECT_THAT(m.ExtractVector<bool>(m.output()),
ElementsAreArray({true, true, false, true, true, true}));
}
TEST(CastOpModel, CastBoolToFloat) {
CastOpModel m({TensorType_BOOL, {3, 2}}, {TensorType_FLOAT32, {3, 2}});
m.PopulateTensor<bool>(m.input(), {true, true, false, true, false, true});
m.Invoke();
EXPECT_THAT(m.ExtractVector<float>(m.output()),
ElementsAreArray({1.f, 1.0f, 0.f, 1.0f, 0.0f, 1.0f}));
}
TEST(CastOpModel, CastFloatToUInt8) {
CastOpModel m({TensorType_FLOAT32, {3, 2}}, {TensorType_UINT8, {3, 2}});
m.PopulateTensor<float>(m.input(), {100.f, 1.0f, 0.f, 0.4f, 1.999f, 1.1f});
m.Invoke();
EXPECT_THAT(m.ExtractVector<uint8_t>(m.output()),
ElementsAreArray({100, 1, 0, 0, 1, 1}));
}
TEST(CastOpModel, CastUInt8ToFloat) {
CastOpModel m({TensorType_UINT8, {3, 2}}, {TensorType_FLOAT32, {3, 2}});
m.PopulateTensor<uint8_t>(m.input(), {123, 0, 1, 2, 3, 4});
m.Invoke();
EXPECT_THAT(m.ExtractVector<float>(m.output()),
ElementsAreArray({123.f, 0.f, 1.f, 2.f, 3.f, 4.f}));
}
TEST(CastOpModel, CastInt32ToUInt8) {
CastOpModel m({TensorType_INT32, {3, 2}}, {TensorType_UINT8, {3, 2}});
m.PopulateTensor<int32_t>(m.input(), {100, 1, 200, 2, 255, 3});
m.Invoke();
EXPECT_THAT(m.ExtractVector<uint8_t>(m.output()),
ElementsAreArray({100, 1, 200, 2, 255, 3}));
}
TEST(CastOpModel, CastUInt8ToInt32) {
CastOpModel m({TensorType_UINT8, {3, 2}}, {TensorType_INT32, {3, 2}});
m.PopulateTensor<uint8_t>(m.input(), {100, 1, 200, 2, 255, 3});
m.Invoke();
EXPECT_THAT(m.ExtractVector<int32_t>(m.output()),
ElementsAreArray({100, 1, 200, 2, 255, 3}));
}
TEST(CastOpModel, CastComplex64ToFloat) {
CastOpModel m({TensorType_COMPLEX64, {2, 3}}, {TensorType_FLOAT32, {2, 3}});
m.PopulateTensor<std::complex<float>>(
m.input(),
{std::complex<float>(1.0f, 11.0f), std::complex<float>(2.0f, 12.0f),
std::complex<float>(3.0f, 13.0f), std::complex<float>(4.0f, 14.0f),
std::complex<float>(5.0f, 15.0f), std::complex<float>(6.0f, 16.0f)});
m.Invoke();
EXPECT_THAT(m.ExtractVector<float>(m.output()),
ElementsAreArray({1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}));
}
TEST(CastOpModel, CastFloatToComplex64) {
CastOpModel m({TensorType_FLOAT32, {2, 3}}, {TensorType_COMPLEX64, {2, 3}});
m.PopulateTensor<float>(m.input(), {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f});
m.Invoke();
EXPECT_THAT(
m.ExtractVector<std::complex<float>>(m.output()),
ElementsAreArray(
{std::complex<float>(1.0f, 0.0f), std::complex<float>(2.0f, 0.0f),
std::complex<float>(3.0f, 0.0f), std::complex<float>(4.0f, 0.0f),
std::complex<float>(5.0f, 0.0f), std::complex<float>(6.0f, 0.0f)}));
}
TEST(CastOpModel, CastComplex64ToInt) {
CastOpModel m({TensorType_COMPLEX64, {2, 3}}, {TensorType_INT32, {2, 3}});
m.PopulateTensor<std::complex<float>>(
m.input(),
{std::complex<float>(1.0f, 11.0f), std::complex<float>(2.0f, 12.0f),
std::complex<float>(3.0f, 13.0f), std::complex<float>(4.0f, 14.0f),
std::complex<float>(5.0f, 15.0f), std::complex<float>(6.0f, 16.0f)});
m.Invoke();
EXPECT_THAT(m.ExtractVector<int>(m.output()),
ElementsAreArray({1, 2, 3, 4, 5, 6}));
}
TEST(CastOpModel, CastIntToComplex64) {
CastOpModel m({TensorType_INT32, {2, 3}}, {TensorType_COMPLEX64, {2, 3}});
m.PopulateTensor<int>(m.input(), {1, 2, 3, 4, 5, 6});
m.Invoke();
EXPECT_THAT(
m.ExtractVector<std::complex<float>>(m.output()),
ElementsAreArray(
{std::complex<float>(1.0f, 0.0f), std::complex<float>(2.0f, 0.0f),
std::complex<float>(3.0f, 0.0f), std::complex<float>(4.0f, 0.0f),
std::complex<float>(5.0f, 0.0f), std::complex<float>(6.0f, 0.0f)}));
}
TEST(CastOpModel, CastComplex64ToComplex64) {
CastOpModel m({TensorType_COMPLEX64, {2, 3}}, {TensorType_COMPLEX64, {2, 3}});
m.PopulateTensor<std::complex<float>>(
m.input(),
{std::complex<float>(1.0f, 11.0f), std::complex<float>(2.0f, 12.0f),
std::complex<float>(3.0f, 13.0f), std::complex<float>(4.0f, 14.0f),
std::complex<float>(5.0f, 15.0f), std::complex<float>(6.0f, 16.0f)});
m.Invoke();
EXPECT_THAT(
m.ExtractVector<std::complex<float>>(m.output()),
ElementsAreArray(
{std::complex<float>(1.0f, 11.0f), std::complex<float>(2.0f, 12.0f),
std::complex<float>(3.0f, 13.0f), std::complex<float>(4.0f, 14.0f),
std::complex<float>(5.0f, 15.0f),
std::complex<float>(6.0f, 16.0f)}));
}
} // namespace
} // namespace tflite