Converter support will be added in a follow-up CL. PiperOrigin-RevId: 340563780 Change-Id: I4ea49fef309518b6447cb117365653b9b1d7d6a1
137 lines
5.0 KiB
C++
137 lines
5.0 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/kernels/internal/reference/broadcast_to.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include <cstdint>
|
|
#include <memory>
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace broadcastto {
|
|
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kShapeTensor = 1;
|
|
constexpr int kOutputTensor = 0;
|
|
constexpr int kMaxDims = 8;
|
|
|
|
struct BroadcastToContext {
|
|
BroadcastToContext(TfLiteContext* context, TfLiteNode* node) {
|
|
input = GetInput(context, node, kInputTensor);
|
|
shape = GetInput(context, node, kShapeTensor);
|
|
output = GetOutput(context, node, kOutputTensor);
|
|
}
|
|
const TfLiteTensor* input;
|
|
const TfLiteTensor* shape;
|
|
TfLiteTensor* output;
|
|
};
|
|
|
|
TfLiteStatus ResizeOutputTensor(TfLiteContext* context,
|
|
BroadcastToContext* op_context) {
|
|
// Ensures the shape is 1D tensor.
|
|
TF_LITE_ENSURE_EQ(context, NumDimensions(op_context->shape), 1);
|
|
|
|
// Ensure output dims is not less than input dims.
|
|
int input_num_dims = NumDimensions(op_context->input);
|
|
int output_num_dims = SizeOfDimension(op_context->shape, 0);
|
|
TF_LITE_ENSURE_MSG(context, input_num_dims <= output_num_dims,
|
|
"Output shape must be broadcastable from input shape.");
|
|
TF_LITE_ENSURE_MSG(context, output_num_dims <= kMaxDims,
|
|
"BroadcastTo only supports 1-8D tensor.");
|
|
|
|
// Check if output shape is broadcastable from input shape.
|
|
auto get_shape_data = [op_context](int i) -> int32_t {
|
|
if (op_context->shape->type == kTfLiteInt32) {
|
|
return GetTensorData<int32_t>(op_context->shape)[i];
|
|
} else {
|
|
return GetTensorData<int64_t>(op_context->shape)[i];
|
|
}
|
|
};
|
|
|
|
int extending_dims = output_num_dims - input_num_dims;
|
|
for (int idx = 0; idx < input_num_dims; ++idx) {
|
|
TF_LITE_ENSURE_MSG(context,
|
|
(SizeOfDimension(op_context->input, idx) == 1 ||
|
|
SizeOfDimension(op_context->input, idx) ==
|
|
get_shape_data(extending_dims + idx)),
|
|
"Output shape must be broadcastable from input shape.");
|
|
}
|
|
// Resizing the shape of the output tensor.
|
|
TfLiteIntArray* output_shape = TfLiteIntArrayCreate(output_num_dims);
|
|
std::unique_ptr<TfLiteIntArray, void (*)(TfLiteIntArray*)>
|
|
scoped_output_shape(output_shape, TfLiteIntArrayFree);
|
|
for (int idx = 0; idx < output_num_dims; ++idx) {
|
|
output_shape->data[idx] = get_shape_data(idx);
|
|
}
|
|
|
|
return context->ResizeTensor(context, op_context->output,
|
|
scoped_output_shape.release());
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TF_LITE_ENSURE(context, NumInputs(node) == 2);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
TF_LITE_ENSURE_MSG(context,
|
|
(NumDimensions(GetInput(context, node, 0)) <= kMaxDims),
|
|
"BroadcastTo only supports 1-8D tensor.");
|
|
|
|
BroadcastToContext op_context(context, node);
|
|
TF_LITE_ENSURE(context, op_context.shape->type == kTfLiteInt32 ||
|
|
op_context.shape->type == kTfLiteInt64);
|
|
TF_LITE_ENSURE_EQ(context, op_context.input->type, op_context.output->type);
|
|
|
|
// Not yet support string type due to the use of memcopy with fixed size.
|
|
TF_LITE_ENSURE(context, op_context.input->type != kTfLiteString);
|
|
|
|
if (IsConstantTensor(op_context.shape)) {
|
|
return ResizeOutputTensor(context, &op_context);
|
|
}
|
|
|
|
SetTensorToDynamic(op_context.output);
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
BroadcastToContext op_context(context, node);
|
|
if (IsDynamicTensor(op_context.output)) {
|
|
TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, &op_context));
|
|
}
|
|
|
|
// BroadcastTo op support upto 8 dims, matching the support of Tensorflow.
|
|
reference_ops::BroadcastTo<kMaxDims>(
|
|
GetTensorShape(op_context.input), op_context.input->data.raw,
|
|
GetTensorShape(op_context.output), op_context.output->data.raw,
|
|
op_context.input->type);
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace broadcastto
|
|
|
|
TfLiteRegistration* Register_BROADCAST_TO() {
|
|
static TfLiteRegistration r = {nullptr, nullptr, broadcastto::Prepare,
|
|
broadcastto::Eval};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|