Qiao Zhang ec86d80f19 Split StreamExecutor impl of pjrt_client into its own files.
Also removed duplicate comments for subclass methods.

PiperOrigin-RevId: 346807683
Change-Id: I2ab9b5038d5e5fc991bfee53d0081c5eecf51906
2020-12-10 10:07:54 -08:00

61 lines
2.2 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_COMPILER_XLA_PJRT_TPU_CLIENT_H_
#define TENSORFLOW_COMPILER_XLA_PJRT_TPU_CLIENT_H_
#include <array>
#include <memory>
#include <vector>
#include "tensorflow/compiler/xla/pjrt/pjrt_stream_executor_client.h"
#include "tensorflow/compiler/xla/statusor.h"
#include "tensorflow/stream_executor/tpu/tpu_topology.h"
namespace xla {
class PjRtTpuDevice : public PjRtStreamExecutorDevice {
public:
PjRtTpuDevice(const tensorflow::tpu::TpuCoreLocationExternal core,
std::unique_ptr<LocalDeviceState> local_device_state,
int host_id, const std::array<int, 3>& coords,
std::string device_kind)
: PjRtStreamExecutorDevice(core.Id(), std::move(local_device_state),
std::move(device_kind), host_id),
core_(core),
coords_(coords) {}
const std::array<int, 3>& coords() const { return coords_; }
int core_on_chip() const { return core_.index(); }
const tensorflow::tpu::TpuCoreLocationExternal core() const { return core_; }
std::string DebugString() const override {
return absl::StrFormat("TPU_%i(host=%i,(%i,%i,%i,%i))", id(), host_id(),
coords_[0], coords_[1], coords_[2], core_.index());
}
private:
const tensorflow::tpu::TpuCoreLocationExternal core_;
const std::array<int, 3> coords_;
};
StatusOr<std::shared_ptr<PjRtClient>> GetTpuClient(
bool asynchronous,
absl::Duration init_retry_timeout = absl::ZeroDuration());
} // namespace xla
#endif // TENSORFLOW_COMPILER_XLA_PJRT_TPU_CLIENT_H_