Smit Hinsu 3061483034 Move WhereOp kernel to the common directory tf2xla/kernels
This will allow it to be used with the new bridge using the fallback path.

Also Added test for the kernel.

PiperOrigin-RevId: 342324585
Change-Id: I343b05809241484ea4fe5081110c7dc773f547ad
2020-11-13 13:21:45 -08:00

92 lines
3.9 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/tf2xla/literal_util.h"
#include "tensorflow/compiler/tf2xla/type_util.h"
#include "tensorflow/compiler/tf2xla/xla_helpers.h"
#include "tensorflow/compiler/tf2xla/xla_op_kernel.h"
#include "tensorflow/compiler/tf2xla/xla_op_registry.h"
#include "tensorflow/compiler/xla/client/lib/arithmetic.h"
#include "tensorflow/compiler/xla/client/lib/comparators.h"
#include "tensorflow/compiler/xla/client/lib/constants.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/ops_util.h"
#include "tensorflow/core/framework/register_types.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/lib/core/status.h"
#include "tensorflow/core/tpu/tpu_defs.h"
namespace tensorflow {
namespace {
class WhereOp : public XlaOpKernel {
public:
explicit WhereOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {}
void Compile(XlaOpKernelContext* ctx) override {
xla::XlaOp condition = ctx->Input(0);
xla::StatusOr<xla::Shape> input_shape = ctx->builder()->GetShape(condition);
OP_REQUIRES_OK(ctx, input_shape.status());
// Use S32 as indices first, then convert to S64 in the end if needed.
auto iota_shape = input_shape.ValueOrDie();
iota_shape.set_element_type(xla::S32);
int64 flattened_size = xla::Product(iota_shape.dimensions());
xla::XlaOp reshaped_condition = xla::Reshape(condition, {flattened_size});
xla::XlaOp zeros = xla::ZerosLike(reshaped_condition);
xla::XlaOp zeros_int = xla::ConvertElementType(zeros, xla::S32);
xla::XlaOp reshaped_condition_int =
xla::ConvertElementType(reshaped_condition, xla::S32);
xla::XlaOp compared = xla::ConvertElementType(
xla::Gt(reshaped_condition_int, zeros_int), xla::S32);
xla::XlaOp length = xla::ReduceAll(
compared, xla::Zero(ctx->builder(), xla::S32),
xla::CreateScalarAddComputation(xla::S32, ctx->builder()));
std::vector<xla::XlaOp> to_sort = {reshaped_condition_int};
std::vector<xla::PrimitiveType> types_to_sort = {xla::S32};
// Generate iota for each dimension, which after combining becomes
// indices of each element.
for (int64 axis = 0; axis < iota_shape.rank(); ++axis) {
xla::XlaOp iota = xla::Iota(ctx->builder(), iota_shape, axis);
xla::XlaOp reshaped = xla::Reshape(iota, {flattened_size});
to_sort.push_back(reshaped);
types_to_sort.push_back(xla::S32);
}
xla::XlaOp sorted = xla::Sort(
to_sort, xla::CreateScalarGtComputation(types_to_sort, ctx->builder()),
/*dimension=*/0,
/*is_stable=*/true);
std::vector<xla::XlaOp> to_concat;
for (int64 i = 0; i < iota_shape.rank(); ++i) {
xla::XlaOp index_single_dim = xla::GetTupleElement(sorted, i + 1);
to_concat.push_back(xla::Reshape(index_single_dim, {flattened_size, 1}));
}
xla::XlaOp result = xla::ConcatInDim(ctx->builder(), to_concat, 1);
result = xla::ConvertElementType(result, ctx->output_xla_type(0));
// Dynamic padder will handle the dynamic dimension.
xla::XlaOp result_padded = xla::SetDimensionSize(result, length, 0);
ctx->SetOutput(0, result_padded);
}
};
REGISTER_XLA_OP(Name("Where").Device(DEVICE_TPU_XLA_JIT), WhereOp);
} // namespace
} // namespace tensorflow