STT-tensorflow/tensorflow/c/eager/unified_api_testutil.cc

187 lines
7.6 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/c/eager/unified_api_testutil.h"
#include "absl/container/flat_hash_set.h"
#include "tensorflow/c/eager/c_api_experimental.h"
#include "tensorflow/c/eager/c_api_test_util.h"
#include "tensorflow/c/eager/c_api_unified_experimental.h"
#include "tensorflow/c/eager/c_api_unified_experimental_internal.h"
#include "tensorflow/c/tf_status.h"
#include "tensorflow/c/tf_status_helper.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/lib/llvm_rtti/llvm_rtti.h"
#include "tensorflow/core/platform/errors.h"
namespace tensorflow {
AbstractContext* BuildFunction(const char* fn_name) {
std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
TF_NewStatus(), TF_DeleteStatus);
TF_ExecutionContext* graph_ctx = TF_CreateFunction(fn_name, status.get());
return unwrap(graph_ctx);
}
Status CreateParamsForInputs(AbstractContext* ctx,
absl::Span<AbstractTensorHandle* const> inputs,
std::vector<AbstractTensorHandle*>* params) {
tracing::TracingTensorHandle* handle = nullptr;
for (auto input : inputs) {
PartialTensorShape shape;
TF_RETURN_IF_ERROR(input->Shape(&shape));
TF_RETURN_IF_ERROR(dyn_cast<tracing::TracingContext>(ctx)->AddParameter(
input->DataType(), shape, &handle));
params->emplace_back(handle);
}
return Status::OK();
}
// Runs `model` maybe wrapped in a function.
Status RunModel(Model model, AbstractContext* ctx,
absl::Span<AbstractTensorHandle* const> inputs,
absl::Span<AbstractTensorHandle*> outputs, bool use_function) {
if (use_function) {
const char* fn_name = "test_fn";
std::unique_ptr<AbstractFunction> scoped_func;
// Returning null tensors from a tf.function is not supported, so we keep
// track of indices in the model's outputs are nullptr in this set.
// The FunctionDef only outputs the non-null tensors. We later pad the
// function op outputs to have nullptrs at the `null_indices`.
absl::flat_hash_set<int> null_indices;
{
AbstractContextPtr func_ctx(BuildFunction(fn_name));
std::vector<AbstractTensorHandle*> func_inputs;
func_inputs.reserve(inputs.size());
TF_RETURN_IF_ERROR(
CreateParamsForInputs(func_ctx.get(), inputs, &func_inputs));
std::vector<AbstractTensorHandle*> model_outputs;
model_outputs.resize(outputs.size());
TF_RETURN_IF_ERROR(model(func_ctx.get(), absl::MakeSpan(func_inputs),
absl::MakeSpan(model_outputs)));
for (auto func_input : func_inputs) {
func_input->Unref();
}
AbstractFunction* func = nullptr;
OutputList output_list;
output_list.expected_num_outputs = 0;
output_list.outputs.reserve(outputs.size());
for (int i = 0; i < model_outputs.size(); i++) {
if (model_outputs[i]) {
output_list.outputs.emplace_back(model_outputs[i]);
output_list.expected_num_outputs += 1;
} else {
null_indices.insert(i);
}
}
TF_RETURN_IF_ERROR(dyn_cast<tracing::TracingContext>(func_ctx.get())
->Finalize(&output_list, &func));
scoped_func.reset(func);
for (auto output : output_list.outputs) {
output->Unref();
}
TF_RETURN_IF_ERROR(ctx->RegisterFunction(func));
}
AbstractOperationPtr fn_op(ctx->CreateOperation());
TF_RETURN_IF_ERROR(fn_op->Reset(fn_name, /*raw_device_name=*/nullptr));
for (auto input : inputs) {
TF_RETURN_IF_ERROR(fn_op->AddInput(input));
}
int retvals = outputs.size() - null_indices.size();
std::vector<AbstractTensorHandle*> fn_outputs(retvals);
TF_RETURN_IF_ERROR(fn_op->Execute(
absl::Span<AbstractTensorHandle*>(fn_outputs.data(), fn_outputs.size()),
&retvals));
int skipped_indices = 0;
for (int i = 0; i < outputs.size(); i++) {
if (!null_indices.contains(i)) {
outputs[i] = fn_outputs[i - skipped_indices];
} else {
skipped_indices += 1;
}
}
TF_RETURN_IF_ERROR(ctx->RemoveFunction(fn_name));
return Status::OK();
} else {
return model(ctx, inputs, outputs);
}
}
Status BuildImmediateExecutionContext(bool use_tfrt, AbstractContext** ctx) {
std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
TF_NewStatus(), TF_DeleteStatus);
TFE_ContextOptions* opts = TFE_NewContextOptions();
TFE_ContextOptionsSetTfrt(opts, use_tfrt);
*ctx = unwrap(TF_NewEagerExecutionContext(opts, status.get()));
TF_RETURN_IF_ERROR(StatusFromTF_Status(status.get()));
TFE_DeleteContextOptions(opts);
return Status::OK();
}
Status TestScalarTensorHandle(AbstractContext* ctx, float value,
AbstractTensorHandle** tensor) {
std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
TF_NewStatus(), TF_DeleteStatus);
TFE_Context* eager_ctx =
TF_ExecutionContextGetTFEContext(wrap(ctx), status.get());
TF_RETURN_IF_ERROR(StatusFromTF_Status(status.get()));
TFE_TensorHandle* input_eager = TestScalarTensorHandle(eager_ctx, value);
*tensor =
unwrap(TF_CreateAbstractTensorFromEagerTensor(input_eager, status.get()));
return Status::OK();
}
Status TestTensorHandleWithDimsFloat(AbstractContext* ctx, float* data,
int64_t* dims, int num_dims,
AbstractTensorHandle** tensor) {
std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
TF_NewStatus(), TF_DeleteStatus);
TFE_Context* eager_ctx =
TF_ExecutionContextGetTFEContext(wrap(ctx), status.get());
TF_RETURN_IF_ERROR(StatusFromTF_Status(status.get()));
TFE_TensorHandle* input_eager =
TestTensorHandleWithDimsFloat(eager_ctx, data, dims, num_dims);
*tensor =
unwrap(TF_CreateAbstractTensorFromEagerTensor(input_eager, status.get()));
return Status::OK();
}
Status TestTensorHandleWithDimsInt(AbstractContext* ctx, int* data,
int64_t* dims, int num_dims,
AbstractTensorHandle** tensor) {
std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
TF_NewStatus(), TF_DeleteStatus);
TFE_Context* eager_ctx =
TF_ExecutionContextGetTFEContext(wrap(ctx), status.get());
TF_RETURN_IF_ERROR(StatusFromTF_Status(status.get()));
TFE_TensorHandle* input_eager =
TestTensorHandleWithDimsInt(eager_ctx, data, dims, num_dims);
*tensor =
unwrap(TF_CreateAbstractTensorFromEagerTensor(input_eager, status.get()));
return Status::OK();
}
Status GetValue(AbstractTensorHandle* t, TF_Tensor** result_tensor) {
std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
TF_NewStatus(), TF_DeleteStatus);
TFE_TensorHandle* result_t =
TF_AbstractTensorGetEagerTensor(wrap(t), status.get());
TF_RETURN_IF_ERROR(StatusFromTF_Status(status.get()));
*result_tensor = TFE_TensorHandleResolve(result_t, status.get());
return StatusFromTF_Status(status.get());
}
} // namespace tensorflow