STT-tensorflow/tensorflow/python/training/proximal_gradient_descent_test.py
Scott Zhu 41339588d9 Remove run_deprecated_v1 in proximal_gradient_descent_test.
All the test case has been updated to run with graph context, since the API expect to run in v1 graph context.

PiperOrigin-RevId: 321296244
Change-Id: I045584d2003febc0dd32b94abccc7382f07eb3d8
2020-07-14 21:53:13 -07:00

208 lines
8.1 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functional tests for Proximal Gradient Descent operations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import embedding_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
from tensorflow.python.training import gradient_descent
from tensorflow.python.training import proximal_gradient_descent
class ProximalGradientDescentOptimizerTest(test.TestCase):
def doTestProximalGradientDescentwithoutRegularization(
self, use_resource=False):
with ops.Graph().as_default(), self.cached_session():
if use_resource:
var0 = resource_variable_ops.ResourceVariable([0.0, 0.0])
var1 = resource_variable_ops.ResourceVariable([0.0, 0.0])
else:
var0 = variables.Variable([0.0, 0.0])
var1 = variables.Variable([0.0, 0.0])
grads0 = constant_op.constant([0.1, 0.2])
grads1 = constant_op.constant([0.01, 0.02])
opt = proximal_gradient_descent.ProximalGradientDescentOptimizer(
3.0, l1_regularization_strength=0.0, l2_regularization_strength=0.0)
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
self.evaluate(variables.global_variables_initializer())
v0_val, v1_val = self.evaluate([var0, var1])
self.assertAllClose([0.0, 0.0], v0_val)
self.assertAllClose([0.0, 0.0], v1_val)
# Run 3 steps Proximal Gradient Descent.
for _ in range(3):
update.run()
v0_val, v1_val = self.evaluate([var0, var1])
self.assertAllClose(np.array([-0.9, -1.8]), v0_val)
self.assertAllClose(np.array([-0.09, -0.18]), v1_val)
def testProximalGradientDescentwithoutRegularization(self):
self.doTestProximalGradientDescentwithoutRegularization(use_resource=False)
def testResourceProximalGradientDescentwithoutRegularization(self):
self.doTestProximalGradientDescentwithoutRegularization(use_resource=True)
def testProximalGradientDescentwithoutRegularization2(self):
with ops.Graph().as_default(), self.cached_session():
var0 = variables.Variable([1.0, 2.0])
var1 = variables.Variable([4.0, 3.0])
grads0 = constant_op.constant([0.1, 0.2])
grads1 = constant_op.constant([0.01, 0.02])
opt = proximal_gradient_descent.ProximalGradientDescentOptimizer(
3.0, l1_regularization_strength=0.0, l2_regularization_strength=0.0)
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
self.evaluate(variables.global_variables_initializer())
v0_val, v1_val = self.evaluate([var0, var1])
self.assertAllClose([1.0, 2.0], v0_val)
self.assertAllClose([4.0, 3.0], v1_val)
# Run 3 steps Proximal Gradient Descent
for _ in range(3):
update.run()
v0_val, v1_val = self.evaluate([var0, var1])
self.assertAllClose(np.array([0.1, 0.2]), v0_val)
self.assertAllClose(np.array([3.91, 2.82]), v1_val)
def testMinimizeSparseResourceVariable(self):
for dtype in [dtypes.float32, dtypes.float64]:
with ops.Graph().as_default(), self.cached_session():
var0 = resource_variable_ops.ResourceVariable([[1.0, 2.0]], dtype=dtype)
x = constant_op.constant([[4.0], [5.0]], dtype=dtype)
pred = math_ops.matmul(embedding_ops.embedding_lookup([var0], [0]), x)
loss = pred * pred
sgd_op = proximal_gradient_descent.ProximalGradientDescentOptimizer(
1.0).minimize(loss)
self.evaluate(variables.global_variables_initializer())
# Fetch params to validate initial values
self.assertAllCloseAccordingToType([[1.0, 2.0]], self.evaluate(var0))
# Run 1 step of sgd
sgd_op.run()
# Validate updated params
self.assertAllCloseAccordingToType([[-111, -138]],
self.evaluate(var0),
atol=0.01)
def testProximalGradientDescentWithL1_L2(self):
with ops.Graph().as_default(), self.cached_session():
var0 = variables.Variable([1.0, 2.0])
var1 = variables.Variable([4.0, 3.0])
grads0 = constant_op.constant([0.1, 0.2])
grads1 = constant_op.constant([0.01, 0.02])
opt = proximal_gradient_descent.ProximalGradientDescentOptimizer(
3.0, l1_regularization_strength=0.001, l2_regularization_strength=2.0)
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
self.evaluate(variables.global_variables_initializer())
v0_val, v1_val = self.evaluate([var0, var1])
self.assertAllClose([1.0, 2.0], v0_val)
self.assertAllClose([4.0, 3.0], v1_val)
# Run 10 steps Proximal Gradient Descent
for _ in range(10):
update.run()
v0_val, v1_val = self.evaluate([var0, var1])
self.assertAllClose(np.array([-0.0495, -0.0995]), v0_val)
self.assertAllClose(np.array([-0.0045, -0.0095]), v1_val)
def applyOptimizer(self, opt, steps=5, is_sparse=False):
if is_sparse:
var0 = variables.Variable([[1.0], [2.0]])
var1 = variables.Variable([[3.0], [4.0]])
grads0 = ops.IndexedSlices(
constant_op.constant(
[0.1], shape=[1, 1]),
constant_op.constant([0]),
constant_op.constant([2, 1]))
grads1 = ops.IndexedSlices(
constant_op.constant(
[0.02], shape=[1, 1]),
constant_op.constant([1]),
constant_op.constant([2, 1]))
else:
var0 = variables.Variable([1.0, 2.0])
var1 = variables.Variable([3.0, 4.0])
grads0 = constant_op.constant([0.1, 0.2])
grads1 = constant_op.constant([0.01, 0.02])
update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
self.evaluate(variables.global_variables_initializer())
v0_val, v1_val = self.evaluate([var0, var1])
if is_sparse:
self.assertAllClose([[1.0], [2.0]], v0_val)
self.assertAllClose([[3.0], [4.0]], v1_val)
else:
self.assertAllClose([1.0, 2.0], v0_val)
self.assertAllClose([3.0, 4.0], v1_val)
# Run ProximalAdagrad for a few steps
for _ in range(steps):
update.run()
v0_val, v1_val = self.evaluate([var0, var1])
return v0_val, v1_val
def testEquivSparseGradientDescentwithoutRegularization(self):
with ops.Graph().as_default(), self.cached_session():
val0, val1 = self.applyOptimizer(
proximal_gradient_descent.ProximalGradientDescentOptimizer(
3.0,
l1_regularization_strength=0.0,
l2_regularization_strength=0.0),
is_sparse=True)
val2, val3 = self.applyOptimizer(
gradient_descent.GradientDescentOptimizer(3.0), is_sparse=True)
self.assertAllClose(val0, val2)
self.assertAllClose(val1, val3)
def testEquivGradientDescentwithoutRegularization(self):
with ops.Graph().as_default(), self.cached_session():
val0, val1 = self.applyOptimizer(
proximal_gradient_descent.ProximalGradientDescentOptimizer(
3.0,
l1_regularization_strength=0.0,
l2_regularization_strength=0.0))
val2, val3 = self.applyOptimizer(
gradient_descent.GradientDescentOptimizer(3.0))
self.assertAllClose(val0, val2)
self.assertAllClose(val1, val3)
if __name__ == "__main__":
test.main()