When creating EMA variables, copy sharding from the primary variables. PiperOrigin-RevId: 352102947 Change-Id: Ib29ae4dc1be7642924da8e386fb21d1a7e1a42e1
514 lines
21 KiB
Python
514 lines
21 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Functional test for moving_averages.py."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.xla.experimental.xla_sharding import xla_sharding
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import gen_state_ops
|
|
from tensorflow.python.ops import variable_scope
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.training import moving_averages
|
|
from tensorflow.python.training import saver as saver_lib
|
|
|
|
|
|
class MovingAveragesTest(test.TestCase):
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testAssignMovingAverageWithoutZeroDebias(self):
|
|
var = variables.Variable([10.0, 11.0])
|
|
val = constant_op.constant([1.0, 2.0], dtypes.float32)
|
|
decay = 0.25
|
|
if context.executing_eagerly():
|
|
self.assertAllClose([10.0, 11.0], self.evaluate(var))
|
|
assign = moving_averages.assign_moving_average(
|
|
var, val, decay, zero_debias=False)
|
|
self.assertAllClose(
|
|
[10.0 * 0.25 + 1.0 * (1.0 - 0.25), 11.0 * 0.25 + 2.0 * (1.0 - 0.25)],
|
|
self.evaluate(var))
|
|
else:
|
|
assign = moving_averages.assign_moving_average(
|
|
var, val, decay, zero_debias=False)
|
|
self.evaluate(variables.global_variables_initializer())
|
|
self.assertAllClose([10.0, 11.0], self.evaluate(var))
|
|
assign.op.run()
|
|
self.assertAllClose(
|
|
[10.0 * 0.25 + 1.0 * (1.0 - 0.25), 11.0 * 0.25 + 2.0 * (1.0 - 0.25)],
|
|
self.evaluate(var))
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testAssignMovingAverage(self):
|
|
var = variables.Variable([0.0, 0.0])
|
|
val = constant_op.constant([1.0, 2.0], dtypes.float32)
|
|
decay = 0.25
|
|
if context.executing_eagerly():
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var))
|
|
assign = moving_averages.assign_moving_average(var, val, decay)
|
|
self.assertAllClose(
|
|
[1.0 * (1.0 - 0.25) / (1 - 0.25), 2.0 * (1.0 - 0.25) / (1 - 0.25)],
|
|
self.evaluate(var))
|
|
else:
|
|
assign = moving_averages.assign_moving_average(var, val, decay)
|
|
self.evaluate(variables.global_variables_initializer())
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var))
|
|
assign.op.run()
|
|
self.assertAllClose(
|
|
[1.0 * (1.0 - 0.25) / (1 - 0.25), 2.0 * (1.0 - 0.25) / (1 - 0.25)],
|
|
self.evaluate(var))
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAssignMovingAverageNewNamingMultipleCalls(self):
|
|
with variable_scope.variable_scope("scope1") as vs1:
|
|
with variable_scope.variable_scope("scope2"):
|
|
var = variables.Variable(1.0, name="Var")
|
|
moving_averages.assign_moving_average(var, 0.0, 0.99)
|
|
moving_averages.assign_moving_average(var, 0.0, 0.99)
|
|
expected_names = ["scope1/scope2/Var:0",
|
|
"scope1/scope2/scope1/scope2/Var/biased:0",
|
|
"scope1/scope2/scope1/scope2/Var/local_step:0",
|
|
"scope1/scope2/scope1/scope2/Var/biased_1:0",
|
|
"scope1/scope2/scope1/scope2/Var/local_step_1:0"]
|
|
actual_names = [v.name for v in vs1.global_variables()]
|
|
self.assertSetEqual(set(expected_names), set(actual_names))
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAssignMovingAverageNewNamingMultipleCallsWithReuse(self):
|
|
with variable_scope.variable_scope("scope1") as vs1:
|
|
var = variable_scope.get_variable("Var", shape=[])
|
|
moving_averages.assign_moving_average(var, 0.0, 0.99)
|
|
moving_averages.assign_moving_average(var, 0.0, 0.99)
|
|
with variable_scope.variable_scope(vs1, reuse=True):
|
|
var = variable_scope.get_variable("Var", shape=[])
|
|
moving_averages.assign_moving_average(var, 0.0, 0.99)
|
|
moving_averages.assign_moving_average(var, 0.0, 0.99)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testWeightedMovingAverage(self):
|
|
with self.cached_session() as sess:
|
|
decay = 0.5
|
|
weight = array_ops.placeholder(dtypes.float32, [])
|
|
val = array_ops.placeholder(dtypes.float32, [])
|
|
|
|
wma = moving_averages.weighted_moving_average(val, decay, weight)
|
|
self.evaluate(variables.global_variables_initializer())
|
|
|
|
# Get the first weighted moving average.
|
|
val_1 = 3.0
|
|
weight_1 = 4.0
|
|
wma_array = sess.run(wma, feed_dict={val: val_1, weight: weight_1})
|
|
numerator_1 = val_1 * weight_1 * (1.0 - decay)
|
|
denominator_1 = weight_1 * (1.0 - decay)
|
|
self.assertAllClose(numerator_1 / denominator_1, wma_array)
|
|
|
|
# Get the second weighted moving average.
|
|
val_2 = 11.0
|
|
weight_2 = 22.0
|
|
wma_array = sess.run(wma, feed_dict={val: val_2, weight: weight_2})
|
|
numerator_2 = numerator_1 * decay + val_2 * weight_2 * (1.0 - decay)
|
|
denominator_2 = denominator_1 * decay + weight_2 * (1.0 - decay)
|
|
self.assertAllClose(numerator_2 / denominator_2, wma_array)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testWeightedMovingAverageBfloat16(self):
|
|
with self.cached_session() as sess:
|
|
decay = 0.5
|
|
weight = array_ops.placeholder(dtypes.bfloat16, [])
|
|
val = array_ops.placeholder(dtypes.bfloat16, [])
|
|
|
|
wma = moving_averages.weighted_moving_average(val, decay, weight)
|
|
self.evaluate(variables.global_variables_initializer())
|
|
|
|
# Get the first weighted moving average.
|
|
val_1 = 3.0
|
|
weight_1 = 4.0
|
|
wma_array = sess.run(wma, feed_dict={val: val_1, weight: weight_1})
|
|
numerator_1 = val_1 * weight_1 * (1.0 - decay)
|
|
denominator_1 = weight_1 * (1.0 - decay)
|
|
self.assertAllClose(numerator_1 / denominator_1, wma_array)
|
|
|
|
# Get the second weighted moving average.
|
|
val_2 = 11.0
|
|
weight_2 = 22.0
|
|
wma_array = sess.run(wma, feed_dict={val: val_2, weight: weight_2})
|
|
numerator_2 = numerator_1 * decay + val_2 * weight_2 * (1.0 - decay)
|
|
denominator_2 = denominator_1 * decay + weight_2 * (1.0 - decay)
|
|
self.assertAllClose(
|
|
dtypes._np_bfloat16(numerator_2 / denominator_2), wma_array)
|
|
|
|
|
|
def _Repeat(value, dim):
|
|
if dim == 1:
|
|
return value
|
|
return [value] * dim
|
|
|
|
|
|
class ExponentialMovingAverageTest(test.TestCase):
|
|
|
|
def _CheckDecay(self, ema, actual_decay, dim):
|
|
|
|
def _Scale(dk, steps):
|
|
if ema._zero_debias:
|
|
return 1 - dk**steps
|
|
else:
|
|
return 1
|
|
|
|
tens = _Repeat(10.0, dim)
|
|
thirties = _Repeat(30.0, dim)
|
|
var0 = variables.Variable(tens, name="v0")
|
|
var1 = variables.Variable(thirties, name="v1")
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Note that tensor2 is not a Variable but just a plain Tensor resulting
|
|
# from the sum operation.
|
|
tensor2 = var0 + var1
|
|
update = ema.apply([var0, var1, tensor2])
|
|
avg0 = ema.average(var0)
|
|
avg1 = ema.average(var1)
|
|
avg2 = ema.average(tensor2)
|
|
|
|
self.assertItemsEqual([var0, var1], variables.moving_average_variables())
|
|
|
|
self.assertNotIn(avg0, variables.trainable_variables())
|
|
self.assertNotIn(avg1, variables.trainable_variables())
|
|
self.assertNotIn(avg2, variables.trainable_variables())
|
|
self.evaluate(variables.global_variables_initializer())
|
|
|
|
self.assertEqual("v0/ExponentialMovingAverage:0", avg0.name)
|
|
self.assertEqual("v1/ExponentialMovingAverage:0", avg1.name)
|
|
self.assertEqual("add/ExponentialMovingAverage:0", avg2.name)
|
|
|
|
# Check initial values.
|
|
self.assertAllClose(tens, self.evaluate(var0))
|
|
self.assertAllClose(thirties, self.evaluate(var1))
|
|
self.assertAllClose(_Repeat(10.0 + 30.0, dim), self.evaluate(tensor2))
|
|
|
|
# Check that averages are initialized correctly.
|
|
self.assertAllClose(tens, self.evaluate(avg0))
|
|
self.assertAllClose(thirties, self.evaluate(avg1))
|
|
# Note that averages of Tensor's initialize to zeros_like since no value
|
|
# of the Tensor is known because the Op has not been run (yet).
|
|
self.assertAllClose(_Repeat(0.0, dim), self.evaluate(avg2))
|
|
|
|
# Update the averages and check.
|
|
self.evaluate(update)
|
|
dk = actual_decay
|
|
|
|
expected = _Repeat(10.0 * dk + 10.0 * (1 - dk), dim)
|
|
self.assertAllClose(expected, self.evaluate(avg0))
|
|
expected = _Repeat(30.0 * dk + 30.0 * (1 - dk), dim)
|
|
self.assertAllClose(expected, self.evaluate(avg1))
|
|
expected = _Repeat(0.0 * dk + (10.0 + 30.0) * (1 - dk) / _Scale(dk, 1), dim)
|
|
self.assertAllClose(expected, self.evaluate(avg2))
|
|
|
|
# Again, update the averages and check.
|
|
self.evaluate(update)
|
|
expected = _Repeat((10.0 * dk + 10.0 * (1 - dk)) * dk + 10.0 * (1 - dk),
|
|
dim)
|
|
self.assertAllClose(expected, self.evaluate(avg0))
|
|
expected = _Repeat((30.0 * dk + 30.0 * (1 - dk)) * dk + 30.0 * (1 - dk),
|
|
dim)
|
|
self.assertAllClose(expected, self.evaluate(avg1))
|
|
expected = _Repeat(((0.0 * dk + (10.0 + 30.0) * (1 - dk)) * dk +
|
|
(10.0 + 30.0) * (1 - dk)) / _Scale(dk, 2), dim)
|
|
self.assertAllClose(expected, self.evaluate(avg2))
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesNoNumUpdates_Scalar(self):
|
|
ema = moving_averages.ExponentialMovingAverage(0.25)
|
|
self._CheckDecay(ema, actual_decay=0.25, dim=1)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesNoNumUpdates_Scalar_Debias(self):
|
|
ema = moving_averages.ExponentialMovingAverage(0.25, zero_debias=True)
|
|
self._CheckDecay(ema, actual_decay=0.25, dim=1)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesNoNumUpdates_Vector(self):
|
|
ema = moving_averages.ExponentialMovingAverage(0.25)
|
|
self._CheckDecay(ema, actual_decay=0.25, dim=5)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesNoNumUpdates_Vector_Debias(self):
|
|
ema = moving_averages.ExponentialMovingAverage(0.25, zero_debias=True)
|
|
self._CheckDecay(ema, actual_decay=0.25, dim=5)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesNumUpdates_Scalar(self):
|
|
# With num_updates 1, the decay applied is 0.1818
|
|
ema = moving_averages.ExponentialMovingAverage(0.25, num_updates=1)
|
|
self._CheckDecay(ema, actual_decay=0.181818, dim=1)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesNumUpdates_Scalar_Debias(self):
|
|
# With num_updates 1, the decay applied is 0.1818
|
|
ema = moving_averages.ExponentialMovingAverage(
|
|
0.25, num_updates=1, zero_debias=True)
|
|
self._CheckDecay(ema, actual_decay=0.181818, dim=1)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesNumUpdates_Vector(self):
|
|
# With num_updates 1, the decay applied is 0.1818
|
|
ema = moving_averages.ExponentialMovingAverage(0.25, num_updates=1)
|
|
self._CheckDecay(ema, actual_decay=0.181818, dim=5)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesNumUpdates_Vector_Debias(self):
|
|
# With num_updates 1, the decay applied is 0.1818
|
|
ema = moving_averages.ExponentialMovingAverage(
|
|
0.25, num_updates=1, zero_debias=True)
|
|
self._CheckDecay(ema, actual_decay=0.181818, dim=5)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesWithControlDeps(self):
|
|
v0 = variables.Variable(0, name="v0")
|
|
add_to_v0 = v0.assign_add(1)
|
|
v1 = variables.Variable([10.0], name="v1")
|
|
assign_to_v1 = v1.assign([20.0])
|
|
ema = moving_averages.ExponentialMovingAverage(0.25)
|
|
with ops.control_dependencies([add_to_v0]):
|
|
ema_op = ema.apply([v1])
|
|
# the moving average of v1 should not have any control inputs
|
|
v1_avg = ema.average(v1)
|
|
self.assertEqual([], v1_avg.initializer.control_inputs)
|
|
self.assertEqual([], v1_avg.value().op.control_inputs)
|
|
self.assertEqual([], v1_avg.value().op.control_inputs)
|
|
# We should be able to initialize v1_avg before v0.
|
|
self.evaluate(v1_avg.initializer)
|
|
self.evaluate(v0.initializer)
|
|
self.assertEqual([10.0], self.evaluate(v1_avg))
|
|
# running ema_op should add to v0 (in addition to updating v1_avg)
|
|
self.evaluate(assign_to_v1)
|
|
self.evaluate(ema_op)
|
|
self.assertEqual(1, self.evaluate(v0))
|
|
self.assertEqual([17.5], self.evaluate(v1_avg))
|
|
|
|
def testBasicEager(self):
|
|
v0 = variables.Variable(1.0)
|
|
v1 = variables.Variable(2.0)
|
|
|
|
ema = moving_averages.ExponentialMovingAverage(0.25)
|
|
op = ema.apply([v0, v1])
|
|
if not context.executing_eagerly():
|
|
self.evaluate(variables.global_variables_initializer())
|
|
self.evaluate(op)
|
|
|
|
self.evaluate(v0.assign(2.0))
|
|
self.evaluate(v1.assign(4.0))
|
|
|
|
self.evaluate(ema.apply([v0, v1]))
|
|
|
|
self.assertAllEqual(self.evaluate(ema.average(v0)), 1.75)
|
|
self.assertAllEqual(self.evaluate(ema.average(v1)), 3.5)
|
|
|
|
def averageVariablesNamesHelper(self, zero_debias):
|
|
v0 = variables.Variable(10.0, name="v0")
|
|
v1 = variables.Variable(30.0, name="v1")
|
|
# Add a non-trainable variable.
|
|
v2 = variables.Variable(20.0, name="v2", trainable=False)
|
|
tensor2 = v0 + v1
|
|
ema = moving_averages.ExponentialMovingAverage(
|
|
0.25, zero_debias=zero_debias, name="foo")
|
|
self.assertEqual("foo", ema.name)
|
|
self.assertEqual("v0/foo", ema.average_name(v0))
|
|
self.assertEqual("v1/foo", ema.average_name(v1))
|
|
self.assertEqual("add/foo", ema.average_name(tensor2))
|
|
ema.apply([v0, v1, tensor2])
|
|
vars_to_restore = ema.variables_to_restore()
|
|
# vars_to_restore should contain the following:
|
|
# {v0/foo : v0,
|
|
# v1/foo : v1,
|
|
# add/foo : add/foo,
|
|
# v2 : v2}
|
|
expected_names = [
|
|
ema.average_name(v0),
|
|
ema.average_name(v1),
|
|
ema.average_name(tensor2), v2.op.name
|
|
]
|
|
if zero_debias:
|
|
# vars_to_restore should also contain the following:
|
|
# {add/foo/biased: add/foo/biased,
|
|
# add/foo/local_step: add/foo/local_step}
|
|
expected_names += [
|
|
ema.average_name(tensor2) + "/biased",
|
|
ema.average_name(tensor2) + "/local_step"
|
|
]
|
|
self.assertEqual(sorted(expected_names), sorted(vars_to_restore.keys()))
|
|
self.assertEqual(ema.average(v0).op.name, ema.average_name(v0))
|
|
self.assertEqual(ema.average(v1).op.name, ema.average_name(v1))
|
|
self.assertEqual(ema.average(tensor2).op.name, ema.average_name(tensor2))
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesNames(self):
|
|
self.averageVariablesNamesHelper(zero_debias=True)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesNamesNoDebias(self):
|
|
self.averageVariablesNamesHelper(zero_debias=False)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def averageVariablesNamesRespectScopeHelper(self, zero_debias):
|
|
# See discussion on #2740.
|
|
with variable_scope.variable_scope("scope1"):
|
|
v0 = variables.Variable(10.0, name="v0")
|
|
v1 = variables.Variable(30.0, name="v1")
|
|
# Add a non-trainable variable.
|
|
v2 = variables.Variable(20.0, name="v2", trainable=False)
|
|
tensor2 = v0 + v1
|
|
with variable_scope.variable_scope("scope2"):
|
|
ema = moving_averages.ExponentialMovingAverage(
|
|
0.25, zero_debias=zero_debias, name="foo")
|
|
self.assertEqual("scope2/scope1/v0/foo", ema.average_name(v0))
|
|
self.assertEqual("scope2/scope1/v1/foo", ema.average_name(v1))
|
|
self.assertEqual("scope2/scope1/add/foo", ema.average_name(tensor2))
|
|
ema.apply([v0, v1, tensor2])
|
|
vars_to_restore = ema.variables_to_restore()
|
|
# `vars_to_restore` should contain the following:
|
|
# {scope2/scope1/v0/foo : v0,
|
|
# scope2/scope1/v1/foo : v1,
|
|
# scope2/scope1/add/foo : add/foo,
|
|
# scope1/v2 : v2}
|
|
expected_names = [
|
|
ema.average_name(v0),
|
|
ema.average_name(v1),
|
|
ema.average_name(tensor2), v2.op.name
|
|
]
|
|
if zero_debias:
|
|
# `vars_to_restore` should also contain the following:
|
|
# {scope2/scope2/scope1/add/foo/biased: add/foo/biased,
|
|
# scope2/scope2/scope1/add/foo/local_step: add/foo/local_step}
|
|
sc = "scope2/"
|
|
expected_names += [
|
|
sc + ema.average_name(tensor2) + "/biased",
|
|
sc + ema.average_name(tensor2) + "/local_step"
|
|
]
|
|
|
|
self.assertEqual(sorted(expected_names), sorted(vars_to_restore.keys()))
|
|
self.assertEqual(ema.average(v0).op.name, ema.average_name(v0))
|
|
self.assertEqual(ema.average(v1).op.name, ema.average_name(v1))
|
|
self.assertEqual(ema.average(tensor2).op.name, ema.average_name(tensor2))
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesNamesRespectScope(self):
|
|
self.averageVariablesNamesRespectScopeHelper(zero_debias=True)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesNamesRespectScopeNoDebias(self):
|
|
self.averageVariablesNamesRespectScopeHelper(zero_debias=False)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testSubsetAverageVariablesNames(self):
|
|
v0 = variables.Variable(10.0, name="v0")
|
|
v1 = variables.Variable(30.0, name="v1")
|
|
# Add a non-trainable variable.
|
|
v2 = variables.Variable(20.0, name="v2", trainable=False)
|
|
tensor2 = v0 + v1
|
|
ema = moving_averages.ExponentialMovingAverage(0.25, name="foo_avg")
|
|
self.assertEqual("v0/foo_avg", ema.average_name(v0))
|
|
self.assertEqual("v1/foo_avg", ema.average_name(v1))
|
|
self.assertEqual("add/foo_avg", ema.average_name(tensor2))
|
|
vars_to_restore = ema.variables_to_restore([v0, tensor2])
|
|
# vars_to_restore should contain the following:
|
|
# {v0/foo_avg : v0,
|
|
# add/foo_avg : add
|
|
# v1 : v1,
|
|
# v2 : v2}
|
|
self.assertEqual(
|
|
sorted(vars_to_restore.keys()),
|
|
sorted([
|
|
ema.average_name(v0),
|
|
ema.average_name(tensor2), v1.op.name, v2.op.name
|
|
]))
|
|
ema.apply([v0, v1, tensor2])
|
|
self.assertEqual(ema.average(v0).op.name, ema.average_name(v0))
|
|
self.assertEqual(ema.average(v1).op.name, ema.average_name(v1))
|
|
self.assertEqual(ema.average(tensor2).op.name, ema.average_name(tensor2))
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testAverageVariablesDeviceAssignment(self):
|
|
with ops.device("/job:dev_v0"):
|
|
v0 = variables.Variable(10.0, name="v0")
|
|
with ops.device("/job:dev_v1"):
|
|
v1 = gen_state_ops.variable(
|
|
shape=[1],
|
|
dtype=dtypes.float32,
|
|
name="v1",
|
|
container="",
|
|
shared_name="")
|
|
v1.set_shape([1])
|
|
tensor2 = v0 + v1
|
|
ema = moving_averages.ExponentialMovingAverage(0.25, name="foo_avg")
|
|
with ops.device("/job:default"):
|
|
ema.apply([v0, v1, tensor2])
|
|
self.assertDeviceEqual("/job:dev_v0", ema.average(v0).device)
|
|
self.assertDeviceEqual("/job:dev_v1", ema.average(v1).device)
|
|
# However, the colocation property is maintained.
|
|
self.assertEqual([b"loc:@v1"], ema.average(v1).op.colocation_groups())
|
|
self.assertDeviceEqual("/job:default", ema.average(tensor2).device)
|
|
|
|
def _ExportAndImportGraph(self, graph):
|
|
"""Export and import graph into a new graph."""
|
|
meta_graph = saver_lib.export_meta_graph(
|
|
graph=graph, collection_list=graph.get_all_collection_keys())
|
|
graph_copy = ops.Graph()
|
|
with graph_copy.as_default():
|
|
_ = saver_lib.import_meta_graph(meta_graph)
|
|
return graph_copy
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testImportedGraphVariablesToRestore(self):
|
|
g = ops.Graph()
|
|
with g.as_default():
|
|
variables.Variable(10.0, name="v")
|
|
# Export and import the graph into a new graph.
|
|
g_copy = self._ExportAndImportGraph(g)
|
|
with g_copy.as_default():
|
|
ema = moving_averages.ExponentialMovingAverage(0.25, name="foo_avg")
|
|
vars_to_restore = ema.variables_to_restore()
|
|
# There should only be one variable in vars_to_restore. This is important
|
|
# to check because when importing from a GraphDef, TF makes duplicate
|
|
# python Variable objects referring to the same underlying variable. We
|
|
# need to be sure that two variables referring to the same variable don't
|
|
# both get added to vars_to_restore.
|
|
self.assertEqual(len(vars_to_restore), 1)
|
|
self.assertIn("v/foo_avg", vars_to_restore)
|
|
|
|
@test_util.deprecated_graph_mode_only
|
|
def testCopyXlaSharding(self):
|
|
ema = moving_averages.ExponentialMovingAverage(0.25, name="foo_avg")
|
|
v = variables.Variable(_Repeat(10.0, 2), name="v")
|
|
self.assertIsNone(xla_sharding.get_tensor_sharding(v))
|
|
v = xla_sharding.mesh_split(v, np.array([0, 1]), [0], use_sharding_op=False)
|
|
self.assertIsNotNone(xla_sharding.get_tensor_sharding(v))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
ema.apply([v])
|
|
avg = ema.average(v)
|
|
self.assertEqual(
|
|
xla_sharding.get_tensor_sharding(v),
|
|
xla_sharding.get_tensor_sharding(avg))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|