308 lines
11 KiB
Python
308 lines
11 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# =============================================================================
|
|
|
|
"""Helper library for sharding during TPU compilation."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from six.moves import xrange # pylint: disable=redefined-builtin
|
|
|
|
from tensorflow.python.framework import tensor_shape
|
|
|
|
_DEFAULT_NUMBER_OF_SHARDS = 1
|
|
_DEFAULT_SHARD_DIMENSION = 0
|
|
|
|
|
|
# TODO(b/36777903) change other parts of tpu.py to use this class.
|
|
class ShardingPolicy(object):
|
|
"""An object use to hold the sharding policy for a Tensor.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self._number_of_shards = None
|
|
self._number_of_partitions = 1
|
|
self._shard_dimension = None
|
|
self._frozen = False
|
|
|
|
def __str__(self):
|
|
if self.number_of_shards is None or self.shard_dimension is None:
|
|
return "ShardingPolicy(unset)"
|
|
else:
|
|
return ("ShardingPolicy(%d shards dimension %d)" %
|
|
(self.number_of_shards, self.shard_dimension))
|
|
|
|
def _fill_default_values(self):
|
|
if self._number_of_shards is None:
|
|
self._number_of_shards = _DEFAULT_NUMBER_OF_SHARDS
|
|
if self._shard_dimension is None:
|
|
self._shard_dimension = tensor_shape.as_dimension(
|
|
_DEFAULT_SHARD_DIMENSION)
|
|
|
|
def freeze(self):
|
|
"""Prevents further modification to the sharding policy.
|
|
|
|
Any values that have not been set when freeze is called are set to
|
|
defaults. If the ShardingPolicy is already frozen, this is a NoOp.
|
|
"""
|
|
if not self._frozen:
|
|
self._fill_default_values()
|
|
self._frozen = True
|
|
|
|
@property
|
|
def number_of_shards(self):
|
|
"""Returns the number of shards in the policy or None if unspecified."""
|
|
return self._number_of_shards
|
|
|
|
def set_number_of_shards(self, number_of_shards):
|
|
"""Sets the number of shards for the current policy.
|
|
|
|
If the policy has been frozen then number_of_shards must match the
|
|
existing setting.
|
|
|
|
Args:
|
|
number_of_shards: The number of shards to use in the policy.
|
|
|
|
Raises:
|
|
ValueError: If the policy has been frozen and number_of_shards
|
|
differs from the frozen value; or number_of_shards <= 0.
|
|
"""
|
|
if self._frozen:
|
|
if self._number_of_shards != number_of_shards:
|
|
raise ValueError(
|
|
"Can't set sharding policy to use %d shards since it has been "
|
|
"frozen to use %d." % (number_of_shards, self._number_of_shards))
|
|
else:
|
|
if number_of_shards > 0:
|
|
self._number_of_shards = number_of_shards
|
|
else:
|
|
raise ValueError(
|
|
"Can't set sharding policy to use %s shards; value must be >0" %
|
|
str(number_of_shards))
|
|
|
|
@property
|
|
def number_of_partitions(self):
|
|
"""Returns the number of partitions of the policy or None if unspecified."""
|
|
return self._number_of_partitions
|
|
|
|
def set_number_of_partitions(self, number_of_partitions):
|
|
"""Sets the number of partitions for the current policy.
|
|
|
|
If the policy has been frozen then shard_dimension must match the
|
|
existing setting.
|
|
|
|
Args:
|
|
number_of_partitions: The number of partitions to use in the policy.
|
|
|
|
Raises:
|
|
ValueError: If the policy has been frozen and shard_dimension
|
|
differs from the frozen value.
|
|
"""
|
|
if self._frozen:
|
|
if self._number_of_partitions != number_of_partitions:
|
|
raise ValueError(
|
|
"Can't set number_of_partitions to %d since it has been frozen to "
|
|
"use %d." % (number_of_partitions, self._number_of_partitions))
|
|
else:
|
|
self._number_of_partitions = number_of_partitions
|
|
|
|
@property
|
|
def shard_dimension(self):
|
|
"""Returns the shard dimension of the policy or None if unspecified."""
|
|
return self._shard_dimension
|
|
|
|
def set_shard_dimension(self, shard_dimension):
|
|
"""Sets the shard dimension for the current policy.
|
|
|
|
If the policy has been frozen then shard_dimension must match the
|
|
existing setting.
|
|
|
|
Args:
|
|
shard_dimension: The shard dimension to use in the policy.
|
|
|
|
Raises:
|
|
ValueError: If the policy has been frozen and shard_dimension
|
|
differs from the frozen value, or shard_dimension can't be
|
|
interpreted as a Dimension.
|
|
"""
|
|
if self._frozen:
|
|
if self._shard_dimension != shard_dimension:
|
|
raise ValueError(
|
|
"Can't set shard dimension to %d since it has been frozen to "
|
|
"use %d." % (shard_dimension, self._shard_dimension))
|
|
else:
|
|
self._shard_dimension = tensor_shape.as_dimension(shard_dimension)
|
|
|
|
def merge(self, other):
|
|
"""Merges the policy of another policy into the current policy.
|
|
|
|
Args:
|
|
other: The policy to merge into this one.
|
|
|
|
Raises:
|
|
ValueError: If this policy has been frozen and the merge conflicts with
|
|
the frozen policy.
|
|
"""
|
|
if other.number_of_shards is not None:
|
|
self.set_number_of_shards(other.number_of_shards)
|
|
if other.shard_dimension is not None:
|
|
self.set_shard_dimension(other.shard_dimension)
|
|
|
|
def get_unpartitioned_shape(self, shape):
|
|
"""Returns the shape of an unpartitioned Tensor.
|
|
|
|
When given the shape of a 'sharded-size' Tensor, returns the shape
|
|
of the full shape of its unpartitioned Tensor.
|
|
|
|
Args:
|
|
shape: The shape of the sharded Tensor.
|
|
|
|
Returns:
|
|
The shape of the unpartitioned version of the Tensor.
|
|
|
|
Raises:
|
|
ValueError: if shape has unknown sharded dimension
|
|
"""
|
|
shape = tensor_shape.as_shape(shape)
|
|
dims = shape.as_list()
|
|
if (self._shard_dimension is None or self._number_of_partitions is None or
|
|
not dims):
|
|
return None
|
|
if dims[self._shard_dimension] is None:
|
|
raise ValueError("shape %s must have a fixed size for dimension %d "
|
|
"that is known at graph construction time." %
|
|
(shape.as_list(), self._shard_dimension))
|
|
if self._number_of_partitions > 1:
|
|
dims[self._shard_dimension] *= self._number_of_partitions
|
|
return tensor_shape.as_shape(dims)
|
|
|
|
def get_sharded_shape(self, shape, shard_index=None):
|
|
"""Returns the shape of a shard of a full Tensor.
|
|
|
|
When given the shape of a 'full-size' Tensor, returns the shape of
|
|
the sub-Tensor after it has been sharded. Freezes the policy if it
|
|
has not yet been frozen.
|
|
|
|
Args:
|
|
shape: The shape of the full-size Tensor to be sharded.
|
|
shard_index: The index of the shard whose shape should be returned.
|
|
shard_index can be None for sharding policies that use the same
|
|
shape for every shard.
|
|
|
|
Returns:
|
|
The shape of the sharded version of the Tensor.
|
|
|
|
Raises:
|
|
ValueError: If shard_index is None when shards are of different
|
|
shapes; or shard_index is not None and
|
|
!(0<=shard_index<number_of_shards); or shape does not have at
|
|
least self.shard_dimension+1 dimensions; or the value of
|
|
shape's shard dimension is not a multiple of
|
|
self.number_of_shards
|
|
"""
|
|
if self._shard_dimension is None or self._number_of_shards is None:
|
|
# Don't raise an error if the config is unset.
|
|
return None
|
|
if shard_index is not None:
|
|
if shard_index < 0 or shard_index >= self.number_of_shards:
|
|
raise ValueError("shard_index %d, but must be in [0,%d)." %
|
|
(shard_index, self._number_of_shards))
|
|
shape = tensor_shape.as_shape(shape)
|
|
if self._number_of_shards == 1:
|
|
# Don't do anything when there's only one shard.
|
|
return shape
|
|
ndims = shape.ndims
|
|
if ndims is None:
|
|
raise ValueError("shape must be a specified shape not Unknown")
|
|
if ndims <= self._shard_dimension:
|
|
raise ValueError("shape %s does not contain shard_dimension %d" %
|
|
(shape.as_list(), self._shard_dimension))
|
|
dims = shape.as_list()
|
|
if dims[self._shard_dimension] is None:
|
|
raise ValueError("shape %s must have a fixed size for dimension %d "
|
|
"that is known at graph construction time." %
|
|
(shape.as_list(), self._shard_dimension))
|
|
if (dims[self._shard_dimension] % self._number_of_shards) != 0:
|
|
raise ValueError("shape %s cannot be sharded %d ways along dimension %d" %
|
|
(shape.as_list(), self._number_of_shards,
|
|
self._shard_dimension))
|
|
dims[self._shard_dimension] //= self._number_of_shards
|
|
return tensor_shape.TensorShape(dims)
|
|
|
|
def _unshard_shape(self, shape):
|
|
"""Return the unsharded shape that would generate a given sharded shape.
|
|
|
|
Args:
|
|
shape: the sharded shape to unshard
|
|
|
|
Returns:
|
|
The unsharded shape.
|
|
|
|
Raises:
|
|
ValueError: if shape is unknown or does not contain
|
|
self.shard_dimension
|
|
TypeError: if shape is not convertible to a TensorShape
|
|
"""
|
|
shape = tensor_shape.as_shape(shape)
|
|
if self._number_of_shards == 1:
|
|
# Don't do anything when there's only one shard.
|
|
return shape
|
|
ndims = shape.ndims
|
|
if ndims is None:
|
|
raise ValueError("shape must be a specified shape not Unknown")
|
|
if ndims <= self._shard_dimension:
|
|
raise ValueError("shape %s does not contain shard_dimension %d" %
|
|
(shape.as_list(), self._shard_dimension))
|
|
dims = shape.as_list()
|
|
dims[self._shard_dimension] *= self._number_of_shards
|
|
return tensor_shape.TensorShape(dims)
|
|
|
|
def get_unsharded_shape(self, shapes):
|
|
"""Returns the shape of an unsharded Tensor given a list of shards.
|
|
|
|
When given a list of shapes of shards, returns the shape of the
|
|
unsharded Tensor that would generate the shards. Sets defaults for the
|
|
policy if number_of_shards or shard_dimension is None.
|
|
|
|
Args:
|
|
shapes: The shapes of the Tensor shards to be combined.
|
|
|
|
Returns:
|
|
The shape of the unsharded version of the Tensor.
|
|
|
|
Raises:
|
|
ValueError: if shapes is not a list of length
|
|
self.number_of_shards; or any element of shapes is not a valid
|
|
shape consistent with the sharding policy; or the list of
|
|
shapes is not a valid sharding of a full shape.
|
|
TypeError: if an element of shapes is not convertible to a
|
|
TensorShape
|
|
"""
|
|
self._fill_default_values()
|
|
if len(shapes) != self.number_of_shards:
|
|
raise ValueError(
|
|
"shapes is %s but must be a list of length number_of_shards=%d" % (
|
|
str(shapes), self.number_of_shards))
|
|
unsharded_shapes = [self._unshard_shape(s) for s in shapes]
|
|
for i in xrange(self.number_of_shards - 1):
|
|
if not unsharded_shapes[i].is_compatible_with(
|
|
unsharded_shapes[self.number_of_shards - 1]):
|
|
raise ValueError(
|
|
"sharded shapes %s are not consistent shards of a full shape "
|
|
"sharded %d ways along dimension %d" % (
|
|
str(shapes), self.number_of_shards, self.shard_dimension))
|
|
return unsharded_shapes[0]
|