Stacks not part of proto. Moved to TF2 only test and run with TF2_BEHAVIOR env set. PiperOrigin-RevId: 351590975 Change-Id: If5aa883c2890e53f7feda54e7ccf05d77921cfa3
98 lines
4.3 KiB
C++
98 lines
4.3 KiB
C++
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "pybind11/pybind11.h"
|
|
#include "pybind11/pytypes.h"
|
|
#include "tensorflow/c/tf_status.h"
|
|
#include "tensorflow/compiler/mlir/python/mlir.h"
|
|
#include "tensorflow/python/lib/core/pybind11_lib.h"
|
|
#include "tensorflow/python/lib/core/pybind11_status.h"
|
|
#include "tensorflow/python/lib/core/safe_ptr.h"
|
|
|
|
PYBIND11_MODULE(_pywrap_mlir, m) {
|
|
m.def("ImportGraphDef",
|
|
[](const std::string &graphdef, const std::string &pass_pipeline,
|
|
bool show_debug_info) {
|
|
tensorflow::Safe_TF_StatusPtr status =
|
|
tensorflow::make_safe(TF_NewStatus());
|
|
std::string output = tensorflow::ImportGraphDef(
|
|
graphdef, pass_pipeline, show_debug_info, status.get());
|
|
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
|
|
return output;
|
|
});
|
|
|
|
m.def("ImportFunction",
|
|
[](const py::handle &context, const std::string &functiondef,
|
|
const std::string &pass_pipeline, bool show_debug_info) {
|
|
tensorflow::Safe_TF_StatusPtr status =
|
|
tensorflow::make_safe(TF_NewStatus());
|
|
auto *ctxt = static_cast<TFE_Context *>(
|
|
PyCapsule_GetPointer(context.ptr(), nullptr));
|
|
if (!ctxt) throw py::error_already_set();
|
|
std::string output = tensorflow::ImportFunction(
|
|
functiondef, pass_pipeline, show_debug_info, ctxt, status.get());
|
|
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
|
|
return output;
|
|
});
|
|
|
|
m.def("ExperimentalConvertSavedModelToMlir",
|
|
[](const std::string &saved_model_path,
|
|
const std::string &exported_names, bool show_debug_info) {
|
|
tensorflow::Safe_TF_StatusPtr status =
|
|
tensorflow::make_safe(TF_NewStatus());
|
|
std::string output = tensorflow::ExperimentalConvertSavedModelToMlir(
|
|
saved_model_path, exported_names, show_debug_info, status.get());
|
|
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
|
|
return output;
|
|
});
|
|
|
|
m.def("ExperimentalConvertSavedModelV1ToMlirLite",
|
|
[](const std::string &saved_model_path, const std::string &tags,
|
|
bool upgrade_legacy, bool show_debug_info) {
|
|
tensorflow::Safe_TF_StatusPtr status =
|
|
tensorflow::make_safe(TF_NewStatus());
|
|
std::string output =
|
|
tensorflow::ExperimentalConvertSavedModelV1ToMlirLite(
|
|
saved_model_path, tags, upgrade_legacy, show_debug_info,
|
|
status.get());
|
|
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
|
|
return output;
|
|
});
|
|
|
|
m.def("ExperimentalConvertSavedModelV1ToMlir",
|
|
[](const std::string &saved_model_path, const std::string &tags,
|
|
bool lift_variables, bool upgrade_legacy, bool show_debug_info) {
|
|
tensorflow::Safe_TF_StatusPtr status =
|
|
tensorflow::make_safe(TF_NewStatus());
|
|
std::string output =
|
|
tensorflow::ExperimentalConvertSavedModelV1ToMlir(
|
|
saved_model_path, tags, lift_variables, upgrade_legacy,
|
|
show_debug_info, status.get());
|
|
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
|
|
return output;
|
|
});
|
|
|
|
m.def("ExperimentalRunPassPipeline",
|
|
[](const std::string &mlir_txt, const std::string &pass_pipeline,
|
|
bool show_debug_info) {
|
|
tensorflow::Safe_TF_StatusPtr status =
|
|
tensorflow::make_safe(TF_NewStatus());
|
|
std::string output = tensorflow::ExperimentalRunPassPipeline(
|
|
mlir_txt, pass_pipeline, show_debug_info, status.get());
|
|
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
|
|
return output;
|
|
});
|
|
};
|