STT-tensorflow/tensorflow/python/mlir_wrapper.cc
Jacques Pienaar 2ab8822125 Use flib of attached context.
Stacks not part of proto. Moved to TF2 only test and run with TF2_BEHAVIOR env set.

PiperOrigin-RevId: 351590975
Change-Id: If5aa883c2890e53f7feda54e7ccf05d77921cfa3
2021-01-13 08:27:32 -08:00

98 lines
4.3 KiB
C++

/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "pybind11/pybind11.h"
#include "pybind11/pytypes.h"
#include "tensorflow/c/tf_status.h"
#include "tensorflow/compiler/mlir/python/mlir.h"
#include "tensorflow/python/lib/core/pybind11_lib.h"
#include "tensorflow/python/lib/core/pybind11_status.h"
#include "tensorflow/python/lib/core/safe_ptr.h"
PYBIND11_MODULE(_pywrap_mlir, m) {
m.def("ImportGraphDef",
[](const std::string &graphdef, const std::string &pass_pipeline,
bool show_debug_info) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output = tensorflow::ImportGraphDef(
graphdef, pass_pipeline, show_debug_info, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ImportFunction",
[](const py::handle &context, const std::string &functiondef,
const std::string &pass_pipeline, bool show_debug_info) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
auto *ctxt = static_cast<TFE_Context *>(
PyCapsule_GetPointer(context.ptr(), nullptr));
if (!ctxt) throw py::error_already_set();
std::string output = tensorflow::ImportFunction(
functiondef, pass_pipeline, show_debug_info, ctxt, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ExperimentalConvertSavedModelToMlir",
[](const std::string &saved_model_path,
const std::string &exported_names, bool show_debug_info) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output = tensorflow::ExperimentalConvertSavedModelToMlir(
saved_model_path, exported_names, show_debug_info, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ExperimentalConvertSavedModelV1ToMlirLite",
[](const std::string &saved_model_path, const std::string &tags,
bool upgrade_legacy, bool show_debug_info) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output =
tensorflow::ExperimentalConvertSavedModelV1ToMlirLite(
saved_model_path, tags, upgrade_legacy, show_debug_info,
status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ExperimentalConvertSavedModelV1ToMlir",
[](const std::string &saved_model_path, const std::string &tags,
bool lift_variables, bool upgrade_legacy, bool show_debug_info) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output =
tensorflow::ExperimentalConvertSavedModelV1ToMlir(
saved_model_path, tags, lift_variables, upgrade_legacy,
show_debug_info, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
m.def("ExperimentalRunPassPipeline",
[](const std::string &mlir_txt, const std::string &pass_pipeline,
bool show_debug_info) {
tensorflow::Safe_TF_StatusPtr status =
tensorflow::make_safe(TF_NewStatus());
std::string output = tensorflow::ExperimentalRunPassPipeline(
mlir_txt, pass_pipeline, show_debug_info, status.get());
tensorflow::MaybeRaiseRegisteredFromTFStatus(status.get());
return output;
});
};