In order to support tests running in eager mode we need to avoid unnecessary use of Sessions in tests. This moves to remove some of the uses of the `run` function in favor of `evaluate`. PiperOrigin-RevId: 223009795
108 lines
3.5 KiB
Python
108 lines
3.5 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Simple benchmarks for reductions and their gradients."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import time
|
|
|
|
import numpy as np
|
|
from six.moves import range # pylint: disable=redefined-builtin
|
|
|
|
from tensorflow.core.protobuf import config_pb2
|
|
from tensorflow.python.client import session
|
|
from tensorflow.python.eager import backprop
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import gradients_impl
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class ReduceBenchmarks(test.Benchmark):
|
|
"""Benchmarks for reductions."""
|
|
|
|
def _run(self, func, num_iters):
|
|
# call func to maybe warm up the GPU
|
|
func()
|
|
start = time.time()
|
|
for _ in range(num_iters):
|
|
func()
|
|
end = time.time()
|
|
mean_us = (end - start) * 1e6 / num_iters
|
|
self.report_benchmark(
|
|
iters=num_iters,
|
|
wall_time=mean_us,
|
|
extras={"examples_per_sec": num_iters / (end - start)})
|
|
|
|
def benchmark_reduce_sum_grad_eager(self):
|
|
with context.eager_mode():
|
|
tensor = array_ops.zeros([100, 1000])
|
|
|
|
def fn():
|
|
backprop.gradients_function(math_ops.reduce_sum, [0])(tensor)
|
|
|
|
self._run(fn, 10000)
|
|
|
|
def benchmark_reduce_sum_grad_eager_cpu(self):
|
|
with context.eager_mode(), ops.device("/cpu:0"):
|
|
tensor = array_ops.zeros([100, 1000])
|
|
|
|
def fn():
|
|
backprop.gradients_function(math_ops.reduce_sum, [0])(tensor)
|
|
|
|
self._run(fn, 10000)
|
|
|
|
def benchmark_reduce_sum_grad_graph(self):
|
|
config = config_pb2.ConfigProto(
|
|
graph_options=config_pb2.GraphOptions(
|
|
optimizer_options=config_pb2.OptimizerOptions(
|
|
opt_level=config_pb2.OptimizerOptions.L0)))
|
|
with ops.Graph().as_default(), session.Session(config=config) as sess:
|
|
|
|
tensor = constant_op.constant(np.zeros([100, 1000], dtype=np.float32))
|
|
reduction = math_ops.reduce_sum(tensor)
|
|
grad, = gradients_impl.gradients(reduction, tensor)
|
|
|
|
def fn():
|
|
self.evaluate(grad.op)
|
|
|
|
self._run(fn, 10000)
|
|
|
|
def benchmark_reduce_sum_grad_graph_cpu(self):
|
|
config = config_pb2.ConfigProto(
|
|
graph_options=config_pb2.GraphOptions(
|
|
optimizer_options=config_pb2.OptimizerOptions(
|
|
opt_level=config_pb2.OptimizerOptions.L0)))
|
|
with ops.Graph().as_default(), session.Session(config=config) as sess:
|
|
|
|
with ops.device("/cpu:0"):
|
|
tensor = constant_op.constant(np.zeros([100, 1000], dtype=np.float32))
|
|
reduction = math_ops.reduce_sum(tensor)
|
|
grad, = gradients_impl.gradients(reduction, tensor)
|
|
|
|
def fn():
|
|
self.evaluate(grad.op)
|
|
|
|
self._run(fn, 10000)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|