This fixes some common incompatibilities with eager mode execution. PiperOrigin-RevId: 319258451 Change-Id: I93c66eb3b8c75f75fd9c1deb9526fbd937b93805
393 lines
14 KiB
Python
393 lines
14 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for tensorflow.kernels.logging_ops."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import string
|
|
import sys
|
|
import tempfile
|
|
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.eager import function
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import sparse_tensor
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import control_flow_ops
|
|
from tensorflow.python.ops import gradients_impl
|
|
from tensorflow.python.ops import logging_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.ops import string_ops
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class LoggingOpsTest(test.TestCase):
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testAssertDivideByZero(self):
|
|
with self.cached_session() as sess:
|
|
epsilon = ops.convert_to_tensor(1e-20)
|
|
x = ops.convert_to_tensor(0.0)
|
|
y = ops.convert_to_tensor(1.0)
|
|
z = ops.convert_to_tensor(2.0)
|
|
# assert(epsilon < y)
|
|
# z / y
|
|
with sess.graph.control_dependencies([
|
|
control_flow_ops.Assert(
|
|
math_ops.less(epsilon, y), ["Divide-by-zero"])
|
|
]):
|
|
out = math_ops.div(z, y)
|
|
self.assertAllEqual(2.0, self.evaluate(out))
|
|
# assert(epsilon < x)
|
|
# z / x
|
|
#
|
|
# This tests printing out multiple tensors
|
|
with sess.graph.control_dependencies([
|
|
control_flow_ops.Assert(
|
|
math_ops.less(epsilon, x), ["Divide-by-zero", "less than x"])
|
|
]):
|
|
out = math_ops.div(z, x)
|
|
with self.assertRaisesOpError("less than x"):
|
|
self.evaluate(out)
|
|
|
|
|
|
@test_util.run_all_in_graph_and_eager_modes
|
|
class PrintV2Test(test.TestCase):
|
|
|
|
def testPrintOneTensor(self):
|
|
tensor = math_ops.range(10)
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(tensor)
|
|
self.evaluate(print_op)
|
|
|
|
expected = "[0 1 2 ... 7 8 9]"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintOneStringTensor(self):
|
|
tensor = ops.convert_to_tensor([char for char in string.ascii_lowercase])
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(tensor)
|
|
self.evaluate(print_op)
|
|
|
|
expected = "[\"a\" \"b\" \"c\" ... \"x\" \"y\" \"z\"]"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintOneTensorVarySummarize(self):
|
|
tensor = math_ops.range(10)
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(tensor, summarize=1)
|
|
self.evaluate(print_op)
|
|
|
|
expected = "[0 ... 9]"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
tensor = math_ops.range(10)
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(tensor, summarize=2)
|
|
self.evaluate(print_op)
|
|
|
|
expected = "[0 1 ... 8 9]"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
tensor = math_ops.range(10)
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(tensor, summarize=3)
|
|
self.evaluate(print_op)
|
|
|
|
expected = "[0 1 2 ... 7 8 9]"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
tensor = math_ops.range(10)
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(tensor, summarize=-1)
|
|
self.evaluate(print_op)
|
|
|
|
expected = "[0 1 2 3 4 5 6 7 8 9]"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintOneVariable(self):
|
|
var = variables.Variable(math_ops.range(10))
|
|
if not context.executing_eagerly():
|
|
self.evaluate(variables.global_variables_initializer())
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(var)
|
|
self.evaluate(print_op)
|
|
expected = "[0 1 2 ... 7 8 9]"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintTwoVariablesInStructWithAssignAdd(self):
|
|
var_one = variables.Variable(2.14)
|
|
plus_one = var_one.assign_add(1.0)
|
|
var_two = variables.Variable(math_ops.range(10))
|
|
if not context.executing_eagerly():
|
|
self.evaluate(variables.global_variables_initializer())
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
self.evaluate(plus_one)
|
|
print_op = logging_ops.print_v2(var_one, {"second": var_two})
|
|
self.evaluate(print_op)
|
|
expected = "3.14 {'second': [0 1 2 ... 7 8 9]}"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintTwoTensors(self):
|
|
tensor = math_ops.range(10)
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(tensor, tensor * 10)
|
|
self.evaluate(print_op)
|
|
expected = "[0 1 2 ... 7 8 9] [0 10 20 ... 70 80 90]"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintTwoTensorsDifferentSep(self):
|
|
tensor = math_ops.range(10)
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(tensor, tensor * 10, sep="<separator>")
|
|
self.evaluate(print_op)
|
|
expected = "[0 1 2 ... 7 8 9]<separator>[0 10 20 ... 70 80 90]"
|
|
self.assertIn(expected + "\n", printed.contents())
|
|
|
|
def testPrintPlaceholderGeneration(self):
|
|
tensor = math_ops.range(10)
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2("{}6", {"{}": tensor * 10})
|
|
self.evaluate(print_op)
|
|
expected = "{}6 {'{}': [0 10 20 ... 70 80 90]}"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintNoTensors(self):
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(23, [23, 5], {"6": 12})
|
|
self.evaluate(print_op)
|
|
expected = "23 [23, 5] {'6': 12}"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintFloatScalar(self):
|
|
for dtype in [dtypes.bfloat16, dtypes.half, dtypes.float32, dtypes.float64]:
|
|
tensor = ops.convert_to_tensor(43.5, dtype=dtype)
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(tensor)
|
|
self.evaluate(print_op)
|
|
expected = "43.5"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintStringScalar(self):
|
|
tensor = ops.convert_to_tensor("scalar")
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(tensor)
|
|
self.evaluate(print_op)
|
|
expected = "scalar"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintStringScalarDifferentEnd(self):
|
|
tensor = ops.convert_to_tensor("scalar")
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(tensor, end="<customend>")
|
|
self.evaluate(print_op)
|
|
expected = "scalar<customend>"
|
|
self.assertIn(expected, printed.contents())
|
|
|
|
def testPrintComplexTensorStruct(self):
|
|
tensor = math_ops.range(10)
|
|
small_tensor = constant_op.constant([0.3, 12.4, -16.1])
|
|
big_tensor = math_ops.mul(tensor, 10)
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(
|
|
"first:", tensor, "middle:",
|
|
{"small": small_tensor, "Big": big_tensor}, 10,
|
|
[tensor * 2, tensor])
|
|
self.evaluate(print_op)
|
|
# Note that the keys in the dict will always be sorted,
|
|
# so 'Big' comes before 'small'
|
|
expected = ("first: [0 1 2 ... 7 8 9] "
|
|
"middle: {'Big': [0 10 20 ... 70 80 90], "
|
|
"'small': [0.3 12.4 -16.1]} "
|
|
"10 [[0 2 4 ... 14 16 18], [0 1 2 ... 7 8 9]]")
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintSparseTensor(self):
|
|
ind = [[0, 0], [1, 0], [1, 3], [4, 1], [1, 4], [3, 2], [3, 3]]
|
|
val = [0, 10, 13, 4, 14, 32, 33]
|
|
shape = [5, 6]
|
|
|
|
sparse = sparse_tensor.SparseTensor(
|
|
constant_op.constant(ind, dtypes.int64),
|
|
constant_op.constant(val, dtypes.int64),
|
|
constant_op.constant(shape, dtypes.int64))
|
|
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2(sparse)
|
|
self.evaluate(print_op)
|
|
expected = ("'SparseTensor(indices=[[0 0]\n"
|
|
" [1 0]\n"
|
|
" [1 3]\n"
|
|
" ...\n"
|
|
" [1 4]\n"
|
|
" [3 2]\n"
|
|
" [3 3]], values=[0 10 13 ... 14 32 33], shape=[5 6])'")
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintSparseTensorInDataStruct(self):
|
|
ind = [[0, 0], [1, 0], [1, 3], [4, 1], [1, 4], [3, 2], [3, 3]]
|
|
val = [0, 10, 13, 4, 14, 32, 33]
|
|
shape = [5, 6]
|
|
|
|
sparse = sparse_tensor.SparseTensor(
|
|
constant_op.constant(ind, dtypes.int64),
|
|
constant_op.constant(val, dtypes.int64),
|
|
constant_op.constant(shape, dtypes.int64))
|
|
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
print_op = logging_ops.print_v2([sparse])
|
|
self.evaluate(print_op)
|
|
expected = ("['SparseTensor(indices=[[0 0]\n"
|
|
" [1 0]\n"
|
|
" [1 3]\n"
|
|
" ...\n"
|
|
" [1 4]\n"
|
|
" [3 2]\n"
|
|
" [3 3]], values=[0 10 13 ... 14 32 33], shape=[5 6])']")
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintOneTensorStdout(self):
|
|
tensor = math_ops.range(10)
|
|
with self.captureWritesToStream(sys.stdout) as printed:
|
|
print_op = logging_ops.print_v2(
|
|
tensor, output_stream=sys.stdout)
|
|
self.evaluate(print_op)
|
|
expected = "[0 1 2 ... 7 8 9]"
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintTensorsToFile(self):
|
|
tmpfile_name = tempfile.mktemp(".printv2_test")
|
|
tensor_0 = math_ops.range(0, 10)
|
|
print_op_0 = logging_ops.print_v2(tensor_0,
|
|
output_stream="file://"+tmpfile_name)
|
|
self.evaluate(print_op_0)
|
|
tensor_1 = math_ops.range(11, 20)
|
|
print_op_1 = logging_ops.print_v2(tensor_1,
|
|
output_stream="file://"+tmpfile_name)
|
|
self.evaluate(print_op_1)
|
|
try:
|
|
f = open(tmpfile_name, "r")
|
|
line_0 = f.readline()
|
|
expected_0 = "[0 1 2 ... 7 8 9]"
|
|
self.assertTrue(expected_0 in line_0)
|
|
line_1 = f.readline()
|
|
expected_1 = "[11 12 13 ... 17 18 19]"
|
|
self.assertTrue(expected_1 in line_1)
|
|
f.close()
|
|
os.remove(tmpfile_name)
|
|
except IOError as e:
|
|
self.fail(e)
|
|
|
|
def testInvalidOutputStreamRaisesError(self):
|
|
tensor = math_ops.range(10)
|
|
with self.assertRaises(ValueError):
|
|
print_op = logging_ops.print_v2(
|
|
tensor, output_stream="unknown")
|
|
self.evaluate(print_op)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testPrintOpName(self):
|
|
tensor = math_ops.range(10)
|
|
print_op = logging_ops.print_v2(tensor, name="print_name")
|
|
self.assertEqual(print_op.name, "print_name")
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testNoDuplicateFormatOpGraphModeAfterExplicitFormat(self):
|
|
tensor = math_ops.range(10)
|
|
formatted_string = string_ops.string_format("{}", tensor)
|
|
print_op = logging_ops.print_v2(formatted_string)
|
|
self.evaluate(print_op)
|
|
graph_ops = ops.get_default_graph().get_operations()
|
|
format_ops = [op for op in graph_ops if op.type == "StringFormat"]
|
|
# Should be only 1 format_op for graph mode.
|
|
self.assertEqual(len(format_ops), 1)
|
|
|
|
def testPrintOneTensorEagerOnOpCreate(self):
|
|
with context.eager_mode():
|
|
tensor = math_ops.range(10)
|
|
expected = "[0 1 2 ... 7 8 9]"
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
logging_ops.print_v2(tensor)
|
|
self.assertIn((expected + "\n"), printed.contents())
|
|
|
|
def testPrintsOrderedInDefun(self):
|
|
with context.eager_mode():
|
|
|
|
@function.defun
|
|
def prints():
|
|
logging_ops.print_v2("A")
|
|
logging_ops.print_v2("B")
|
|
logging_ops.print_v2("C")
|
|
|
|
with self.captureWritesToStream(sys.stderr) as printed:
|
|
prints()
|
|
self.assertTrue(("A\nB\nC\n"), printed.contents())
|
|
|
|
def testPrintInDefunWithoutExplicitEvalOfPrint(self):
|
|
@function.defun
|
|
def f():
|
|
tensor = math_ops.range(10)
|
|
logging_ops.print_v2(tensor)
|
|
return tensor
|
|
|
|
expected = "[0 1 2 ... 7 8 9]"
|
|
with self.captureWritesToStream(sys.stderr) as printed_one:
|
|
x = f()
|
|
self.evaluate(x)
|
|
self.assertIn((expected + "\n"), printed_one.contents())
|
|
|
|
# We execute the function again to make sure it doesn't only print on the
|
|
# first call.
|
|
with self.captureWritesToStream(sys.stderr) as printed_two:
|
|
y = f()
|
|
self.evaluate(y)
|
|
self.assertIn((expected + "\n"), printed_two.contents())
|
|
|
|
|
|
class PrintGradientTest(test.TestCase):
|
|
|
|
@test_util.run_in_graph_and_eager_modes
|
|
def testPrintShape(self):
|
|
inp = constant_op.constant(2.0, shape=[100, 32])
|
|
inp_printed = logging_ops.Print(inp, [inp])
|
|
self.assertEqual(inp.get_shape(), inp_printed.get_shape())
|
|
|
|
def testPrintString(self):
|
|
inp = constant_op.constant(2.0, shape=[100, 32])
|
|
inp_printed = logging_ops.Print(inp, ["hello"])
|
|
self.assertEqual(inp.get_shape(), inp_printed.get_shape())
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testPrintGradient(self):
|
|
inp = constant_op.constant(2.0, shape=[100, 32], name="in")
|
|
w = constant_op.constant(4.0, shape=[10, 100], name="w")
|
|
wx = math_ops.matmul(w, inp, name="wx")
|
|
wx_print = logging_ops.Print(wx, [w, w, w])
|
|
wx_grad = gradients_impl.gradients(wx, w)[0]
|
|
wx_print_grad = gradients_impl.gradients(wx_print, w)[0]
|
|
wxg = self.evaluate(wx_grad)
|
|
wxpg = self.evaluate(wx_print_grad)
|
|
self.assertAllEqual(wxg, wxpg)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|