use_gpu is True by default in test utils starting CL 356906251 I will wait a bit before checking this in since once this is checked in, it would be harder to roll back CL 356906251 PiperOrigin-RevId: 357322055 Change-Id: Ibbeb900d93f9fb43c2dc61285ee38e582b29dcfc
261 lines
9.1 KiB
Python
261 lines
9.1 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for convolution related functionality in tensorflow.ops.nn."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
from six.moves import xrange # pylint: disable=redefined-builtin
|
|
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import gradient_checker
|
|
from tensorflow.python.ops import nn_ops
|
|
import tensorflow.python.ops.nn_grad # pylint: disable=unused-import
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class Conv1DTransposeTest(test.TestCase):
|
|
|
|
def testConv1DTransposeSingleStride(self):
|
|
with self.cached_session():
|
|
strides = [1, 1, 1]
|
|
|
|
# Input, output: [batch, width, depth]
|
|
x_shape = [2, 6, 3]
|
|
y_shape = [2, 6, 2]
|
|
|
|
# Filter: [kernel_width, output_depth, input_depth]
|
|
f_shape = [3, 2, 3]
|
|
|
|
x = constant_op.constant(
|
|
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
|
|
f = constant_op.constant(
|
|
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
|
|
output = nn_ops.conv1d_transpose(
|
|
x, f, y_shape, strides=strides, padding="SAME")
|
|
value = self.evaluate(output)
|
|
|
|
for n in xrange(y_shape[0]):
|
|
for w in xrange(y_shape[1]):
|
|
for c in xrange(y_shape[2]):
|
|
target = 2 * 3.0
|
|
w_in = w > 0 and w < y_shape[1] - 1
|
|
if w_in:
|
|
target += 3.0
|
|
self.assertAllClose(target, value[n, w, c])
|
|
|
|
def testConv1DTransposeSame(self):
|
|
with self.cached_session():
|
|
strides = [1, 2, 1]
|
|
|
|
# Input, output: [batch, width, depth]
|
|
x_shape = [2, 4, 3]
|
|
y_shape = [2, 8, 2]
|
|
|
|
# Filter: [kernel_width, output_depth, input_depth]
|
|
f_shape = [3, 2, 3]
|
|
|
|
x = constant_op.constant(
|
|
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
|
|
f = constant_op.constant(
|
|
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
|
|
output = nn_ops.conv1d_transpose(
|
|
x, f, y_shape, strides=strides, padding="SAME")
|
|
value = self.evaluate(output)
|
|
|
|
for n in xrange(x_shape[0]):
|
|
for k in xrange(f_shape[1]):
|
|
for w in xrange(y_shape[1]):
|
|
target = 3.0
|
|
# We add a case for locations divisible by the stride.
|
|
w_in = w % strides[1] == 0 and w > 0 and w < y_shape[1] - 1
|
|
if w_in:
|
|
target += 3.0
|
|
self.assertAllClose(target, value[n, w, k])
|
|
|
|
def testConv1DTransposeValid(self):
|
|
with self.cached_session():
|
|
strides = [1, 2, 1]
|
|
|
|
# Input, output: [batch, width, depth]
|
|
x_shape = [2, 4, 3]
|
|
y_shape = [2, 9, 2]
|
|
|
|
# Filter: [kernel_width, output_depth, input_depth]
|
|
f_shape = [3, 2, 3]
|
|
|
|
x = constant_op.constant(
|
|
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
|
|
f = constant_op.constant(
|
|
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
|
|
output = nn_ops.conv1d_transpose(
|
|
x, f, y_shape, strides=strides, padding="VALID")
|
|
value = self.evaluate(output)
|
|
|
|
cache_values = np.zeros(y_shape, dtype=np.float32)
|
|
|
|
# The amount of padding added
|
|
pad = 1
|
|
|
|
for n in xrange(x_shape[0]):
|
|
for k in xrange(f_shape[1]):
|
|
for w in xrange(pad, y_shape[1] - pad):
|
|
target = 3.0
|
|
# We add a case for locations divisible by the stride.
|
|
w_in = w % strides[1] == 0 and w > pad and w < y_shape[1] - 1 - pad
|
|
if w_in:
|
|
target += 3.0
|
|
cache_values[n, w, k] = target
|
|
|
|
# copy values in the border
|
|
cache_values[n, 0, k] = cache_values[n, 1, k]
|
|
cache_values[n, -1, k] = cache_values[n, -2, k]
|
|
cache_values[n, :, k] = cache_values[n, :, k]
|
|
|
|
self.assertAllClose(cache_values, value)
|
|
|
|
@test_util.run_deprecated_v1
|
|
def testGradient(self):
|
|
x_shape = [2, 4, 3]
|
|
f_shape = [3, 2, 3]
|
|
y_shape = [2, 8, 2]
|
|
strides = [1, 2, 1]
|
|
np.random.seed(1) # Make it reproducible.
|
|
x_val = np.random.random_sample(x_shape).astype(np.float64)
|
|
f_val = np.random.random_sample(f_shape).astype(np.float64)
|
|
with self.cached_session():
|
|
x = constant_op.constant(x_val, name="x", dtype=dtypes.float32)
|
|
f = constant_op.constant(f_val, name="f", dtype=dtypes.float32)
|
|
output = nn_ops.conv1d_transpose(
|
|
x, f, y_shape, strides=strides, padding="SAME")
|
|
err = gradient_checker.compute_gradient_error([x, f], [x_shape, f_shape],
|
|
output, y_shape)
|
|
print("conv1d_transpose gradient err = %g " % err)
|
|
err_tolerance = 0.0005
|
|
self.assertLess(err, err_tolerance)
|
|
|
|
def testConv1DTransposeSingleStrideNCW(self):
|
|
# `NCW` data format is only supported for CUDA device.
|
|
if test.is_gpu_available(cuda_only=True):
|
|
with self.session():
|
|
strides = [1, 1, 1]
|
|
|
|
# Input, output: [batch, depth, width]
|
|
x_shape = [2, 3, 4]
|
|
y_shape = [2, 2, 4]
|
|
|
|
# Filter: [kernel_width, output_depth, input_depth]
|
|
f_shape = [3, 2, 3]
|
|
|
|
x = constant_op.constant(
|
|
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
|
|
f = constant_op.constant(
|
|
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
|
|
|
|
output = nn_ops.conv1d_transpose(
|
|
x, f, y_shape, strides=strides, padding="SAME", data_format="NCW")
|
|
|
|
value = self.evaluate(output)
|
|
for n in xrange(x_shape[0]):
|
|
for k in xrange(f_shape[1]):
|
|
for w in xrange(y_shape[2]):
|
|
target = 2 * 3.0
|
|
w_in = w > 0 and w < y_shape[2] - 1
|
|
if w_in:
|
|
target += 3.0
|
|
self.assertAllClose(target, value[n, k, w])
|
|
|
|
def testConv1DTransposeSameNCW(self):
|
|
# `NCW` data format is only supported for CUDA device.
|
|
if test.is_gpu_available(cuda_only=True):
|
|
with self.session():
|
|
strides = [1, 1, 2]
|
|
|
|
# Input, output: [batch, depth, width]
|
|
x_shape = [2, 3, 4]
|
|
y_shape = [2, 2, 8]
|
|
|
|
# Filter: [kernel_width, output_depth, input_depth]
|
|
f_shape = [3, 2, 3]
|
|
|
|
x = constant_op.constant(
|
|
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
|
|
f = constant_op.constant(
|
|
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
|
|
|
|
output = nn_ops.conv1d_transpose(
|
|
x, f, y_shape, strides=strides, padding="SAME", data_format="NCW")
|
|
|
|
value = self.evaluate(output)
|
|
for n in xrange(x_shape[0]):
|
|
for k in xrange(f_shape[1]):
|
|
for w in xrange(y_shape[2]):
|
|
target = 3.0
|
|
# We add a case for locations divisible by the stride.
|
|
w_in = w % strides[2] == 0 and w > 0 and w < y_shape[2] - 1
|
|
if w_in:
|
|
target += 3.0
|
|
self.assertAllClose(target, value[n, k, w])
|
|
|
|
def testConv1DTransposeValidNCW(self):
|
|
# `NCW` data format is only supported for CUDA device.
|
|
if test.is_gpu_available(cuda_only=True):
|
|
with self.session():
|
|
strides = [1, 1, 2]
|
|
|
|
# Input, output: [batch, depth, width]
|
|
x_shape = [2, 3, 4]
|
|
y_shape = [2, 2, 9]
|
|
|
|
# Filter: [kernel_width, output_depth, input_depth]
|
|
f_shape = [3, 2, 3]
|
|
|
|
x = constant_op.constant(
|
|
1.0, shape=x_shape, name="x", dtype=dtypes.float32)
|
|
f = constant_op.constant(
|
|
1.0, shape=f_shape, name="filter", dtype=dtypes.float32)
|
|
output = nn_ops.conv1d_transpose(
|
|
x, f, y_shape, strides=strides, padding="VALID", data_format="NCW")
|
|
|
|
value = self.evaluate(output)
|
|
cache_values = np.zeros(y_shape, dtype=np.float32)
|
|
# The amount of padding added
|
|
pad = 1
|
|
for n in xrange(x_shape[0]):
|
|
for k in xrange(f_shape[1]):
|
|
for w in xrange(pad, y_shape[2] - pad):
|
|
target = 3.0
|
|
# We add a case for locations divisible by the stride.
|
|
w_in = w % strides[2] == 0 and w > pad and \
|
|
w < y_shape[2] - 1 - pad
|
|
if w_in:
|
|
target += 3.0
|
|
cache_values[n, k, w] = target
|
|
|
|
# copy values in the border
|
|
cache_values[n, k, 0] = cache_values[n, k, 1]
|
|
cache_values[n, k, -1] = cache_values[n, k, -2]
|
|
cache_values[n, k, :] = cache_values[n, k, :]
|
|
|
|
self.assertAllClose(cache_values, value)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|