use_gpu is True by default in test utils starting CL 356906251 I will wait a bit before checking this in since once this is checked in, it would be harder to roll back CL 356906251 PiperOrigin-RevId: 357322055 Change-Id: Ibbeb900d93f9fb43c2dc61285ee38e582b29dcfc
644 lines
21 KiB
Python
644 lines
21 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for bincount_ops.bincount."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from absl.testing import parameterized
|
|
import numpy as np
|
|
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import errors
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import bincount_ops
|
|
from tensorflow.python.ops import gen_math_ops
|
|
from tensorflow.python.ops import sparse_ops
|
|
from tensorflow.python.ops.ragged import ragged_factory_ops
|
|
from tensorflow.python.ops.ragged import ragged_tensor
|
|
from tensorflow.python.platform import googletest
|
|
|
|
|
|
class BincountTest(test_util.TensorFlowTestCase):
|
|
|
|
def test_empty(self):
|
|
with self.session():
|
|
self.assertAllEqual(
|
|
self.evaluate(bincount_ops.bincount([], minlength=5)),
|
|
[0, 0, 0, 0, 0])
|
|
self.assertAllEqual(
|
|
self.evaluate(bincount_ops.bincount([], minlength=1)), [0])
|
|
self.assertAllEqual(
|
|
self.evaluate(bincount_ops.bincount([], minlength=0)), [])
|
|
self.assertEqual(
|
|
self.evaluate(
|
|
bincount_ops.bincount([], minlength=0, dtype=np.float32)).dtype,
|
|
np.float32)
|
|
self.assertEqual(
|
|
self.evaluate(
|
|
bincount_ops.bincount([], minlength=3, dtype=np.float64)).dtype,
|
|
np.float64)
|
|
|
|
def test_values(self):
|
|
with self.session():
|
|
self.assertAllEqual(
|
|
self.evaluate(bincount_ops.bincount([1, 1, 1, 2, 2, 3])),
|
|
[0, 3, 2, 1])
|
|
arr = [1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5]
|
|
self.assertAllEqual(
|
|
self.evaluate(bincount_ops.bincount(arr)), [0, 5, 4, 3, 2, 1])
|
|
arr += [0, 0, 0, 0, 0, 0]
|
|
self.assertAllEqual(
|
|
self.evaluate(bincount_ops.bincount(arr)), [6, 5, 4, 3, 2, 1])
|
|
|
|
self.assertAllEqual(self.evaluate(bincount_ops.bincount([])), [])
|
|
self.assertAllEqual(self.evaluate(bincount_ops.bincount([0, 0, 0])), [3])
|
|
self.assertAllEqual(
|
|
self.evaluate(bincount_ops.bincount([5])), [0, 0, 0, 0, 0, 1])
|
|
self.assertAllEqual(
|
|
self.evaluate(bincount_ops.bincount(np.arange(10000))),
|
|
np.ones(10000))
|
|
|
|
def test_maxlength(self):
|
|
with self.session():
|
|
self.assertAllEqual(
|
|
self.evaluate(bincount_ops.bincount([5], maxlength=3)), [0, 0, 0])
|
|
self.assertAllEqual(
|
|
self.evaluate(bincount_ops.bincount([1], maxlength=3)), [0, 1])
|
|
self.assertAllEqual(
|
|
self.evaluate(bincount_ops.bincount([], maxlength=3)), [])
|
|
|
|
def test_random_with_weights(self):
|
|
num_samples = 10000
|
|
with self.session():
|
|
np.random.seed(42)
|
|
for dtype in [dtypes.int32, dtypes.int64, dtypes.float32, dtypes.float64]:
|
|
arr = np.random.randint(0, 1000, num_samples)
|
|
if dtype == dtypes.int32 or dtype == dtypes.int64:
|
|
weights = np.random.randint(-100, 100, num_samples)
|
|
else:
|
|
weights = np.random.random(num_samples)
|
|
self.assertAllClose(
|
|
self.evaluate(bincount_ops.bincount(arr, weights)),
|
|
np.bincount(arr, weights))
|
|
|
|
def test_random_without_weights(self):
|
|
num_samples = 10000
|
|
with self.session():
|
|
np.random.seed(42)
|
|
for dtype in [np.int32, np.float32]:
|
|
arr = np.random.randint(0, 1000, num_samples)
|
|
weights = np.ones(num_samples).astype(dtype)
|
|
self.assertAllClose(
|
|
self.evaluate(bincount_ops.bincount(arr, None)),
|
|
np.bincount(arr, weights))
|
|
|
|
def test_zero_weights(self):
|
|
with self.session():
|
|
self.assertAllEqual(
|
|
self.evaluate(bincount_ops.bincount(np.arange(1000), np.zeros(1000))),
|
|
np.zeros(1000))
|
|
|
|
def test_negative(self):
|
|
# unsorted_segment_sum will only report InvalidArgumentError on CPU
|
|
with self.cached_session(), ops.device("/CPU:0"):
|
|
with self.assertRaises(errors.InvalidArgumentError):
|
|
self.evaluate(bincount_ops.bincount([1, 2, 3, -1, 6, 8]))
|
|
|
|
def test_shape_function(self):
|
|
# size must be scalar.
|
|
with self.assertRaisesRegex(
|
|
(ValueError, errors.InvalidArgumentError),
|
|
"Shape must be rank 0 but is rank 1 .*Bincount"):
|
|
gen_math_ops.bincount([1, 2, 3, 1, 6, 8], [1], [])
|
|
# size must be positive.
|
|
with self.assertRaisesRegex((ValueError, errors.InvalidArgumentError),
|
|
"must be non-negative"):
|
|
gen_math_ops.bincount([1, 2, 3, 1, 6, 8], -5, [])
|
|
# if size is a constant then the shape is known.
|
|
v1 = gen_math_ops.bincount([1, 2, 3, 1, 6, 8], 5, [])
|
|
self.assertAllEqual(v1.get_shape().as_list(), [5])
|
|
# if size is a placeholder then the shape is unknown.
|
|
with ops.Graph().as_default():
|
|
s = array_ops.placeholder(dtype=dtypes.int32)
|
|
v2 = gen_math_ops.bincount([1, 2, 3, 1, 6, 8], s, [])
|
|
self.assertAllEqual(v2.get_shape().as_list(), [None])
|
|
|
|
|
|
class BincountOpTest(test_util.TensorFlowTestCase, parameterized.TestCase):
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_bincount_all_count(self, dtype):
|
|
np.random.seed(42)
|
|
size = 1000
|
|
inp = np.random.randint(0, size, (4096), dtype=dtype)
|
|
np_out = np.bincount(inp, minlength=size)
|
|
with test_util.use_gpu():
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.dense_bincount(input=inp, weights=[], size=size)))
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_bincount_all_count_with_weights(self, dtype):
|
|
np.random.seed(42)
|
|
size = 1000
|
|
inp = np.random.randint(0, size, (4096,), dtype=dtype)
|
|
np_weight = np.random.random((4096,))
|
|
np_out = np.bincount(inp, minlength=size, weights=np_weight)
|
|
with test_util.use_gpu():
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.dense_bincount(
|
|
input=inp, weights=np_weight, size=size)))
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_bincount_all_binary(self, dtype):
|
|
np.random.seed(42)
|
|
size = 10
|
|
inp = np.random.randint(0, size, (4096), dtype=dtype)
|
|
np_out = np.ones((size,))
|
|
with test_util.use_gpu():
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.dense_bincount(
|
|
input=inp, weights=[], size=size, binary_output=True)))
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_bincount_all_binary_with_weights(self, dtype):
|
|
np.random.seed(42)
|
|
size = 10
|
|
inp = np.random.randint(0, size, (4096,), dtype=dtype)
|
|
np_weight = np.random.random((4096,))
|
|
np_out = np.ones((size,))
|
|
with test_util.use_gpu():
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.dense_bincount(
|
|
input=inp, weights=np_weight, size=size, binary_output=True)))
|
|
|
|
def _test_bincount_col_count(self, num_rows, num_cols, size, dtype):
|
|
np.random.seed(42)
|
|
inp = np.random.randint(0, size, (num_rows, num_cols), dtype=dtype)
|
|
np_out = np.reshape(
|
|
np.concatenate(
|
|
[np.bincount(inp[j, :], minlength=size) for j in range(num_rows)],
|
|
axis=0), (num_rows, size))
|
|
with test_util.use_gpu():
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.dense_bincount(input=inp, weights=[], size=size)))
|
|
|
|
def _test_bincount_col_binary(self, num_rows, num_cols, size, dtype):
|
|
np.random.seed(42)
|
|
inp = np.random.randint(0, size, (num_rows, num_cols), dtype=dtype)
|
|
np_out = np.reshape(
|
|
np.concatenate([
|
|
np.where(np.bincount(inp[j, :], minlength=size) > 0, 1, 0)
|
|
for j in range(num_rows)
|
|
],
|
|
axis=0), (num_rows, size))
|
|
with test_util.use_gpu():
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.dense_bincount(
|
|
input=inp, weights=[], size=size, binary_output=True)))
|
|
|
|
def _test_bincount_col_count_with_weights(self, num_rows, num_cols, size,
|
|
dtype):
|
|
np.random.seed(42)
|
|
inp = np.random.randint(0, size, (num_rows, num_cols), dtype=dtype)
|
|
np_weight = np.random.random((num_rows, num_cols))
|
|
np_out = np.reshape(
|
|
np.concatenate([
|
|
np.bincount(inp[j, :], weights=np_weight[j, :], minlength=size)
|
|
for j in range(num_rows)
|
|
],
|
|
axis=0), (num_rows, size))
|
|
with test_util.use_gpu():
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.dense_bincount(
|
|
input=inp, weights=np_weight, size=size)))
|
|
|
|
def test_col_reduce_basic(self):
|
|
with test_util.use_gpu():
|
|
v = self.evaluate(
|
|
gen_math_ops.dense_bincount(
|
|
input=[[1, 2, 3], [0, 3, 2]], weights=[], size=4))
|
|
expected_out = [[0., 1., 1., 1.], [1., 0., 1., 1.]]
|
|
self.assertAllEqual(expected_out, v)
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_col_reduce_shared_memory(self, dtype):
|
|
# num_rows * num_bins less than half of max shared memory.
|
|
num_rows = 128
|
|
num_cols = 27
|
|
size = 10
|
|
self._test_bincount_col_count(num_rows, num_cols, size, dtype)
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_col_reduce_global_memory(self, dtype):
|
|
# num_rows * num_bins more than half of max shared memory.
|
|
num_rows = 128
|
|
num_cols = 27
|
|
size = 1024
|
|
self._test_bincount_col_count(num_rows, num_cols, size, dtype)
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_col_reduce_shared_memory_with_weights(self, dtype):
|
|
# num_rows * num_bins less than half of max shared memory.
|
|
num_rows = 128
|
|
num_cols = 27
|
|
size = 100
|
|
self._test_bincount_col_count_with_weights(num_rows, num_cols, size, dtype)
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_col_reduce_global_memory_with_weights(self, dtype):
|
|
# num_rows * num_bins more than half of max shared memory.
|
|
num_rows = 128
|
|
num_cols = 27
|
|
size = 1024
|
|
self._test_bincount_col_count_with_weights(num_rows, num_cols, size, dtype)
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_col_reduce_binary(self, dtype):
|
|
num_rows = 128
|
|
num_cols = 7
|
|
size = 10
|
|
self._test_bincount_col_binary(num_rows, num_cols, size, dtype)
|
|
|
|
def test_invalid_rank(self):
|
|
with self.assertRaisesRegex((ValueError, errors.InvalidArgumentError),
|
|
"at most rank 2"):
|
|
with test_util.use_gpu():
|
|
self.evaluate(
|
|
gen_math_ops.dense_bincount(
|
|
input=[[[1, 2, 3], [0, 3, 2]]], weights=[], size=10))
|
|
|
|
|
|
class SparseBincountOpTest(test_util.TensorFlowTestCase,
|
|
parameterized.TestCase):
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_sparse_bincount_all_count(self, dtype):
|
|
np.random.seed(42)
|
|
num_rows = 128
|
|
size = 1000
|
|
n_elems = 4096
|
|
inp_indices = np.random.randint(0, num_rows, (n_elems,))
|
|
inp_vals = np.random.randint(0, size, (n_elems,), dtype=dtype)
|
|
|
|
np_out = np.bincount(inp_vals, minlength=size)
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.sparse_bincount(
|
|
indices=inp_indices,
|
|
values=inp_vals,
|
|
dense_shape=[num_rows],
|
|
size=size,
|
|
weights=[])))
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_sparse_bincount_all_count_with_weights(self, dtype):
|
|
np.random.seed(42)
|
|
num_rows = 128
|
|
size = 1000
|
|
n_elems = 4096
|
|
inp_indices = np.random.randint(0, num_rows, (n_elems,))
|
|
inp_vals = np.random.randint(0, size, (n_elems,), dtype=dtype)
|
|
inp_weight = np.random.random((n_elems,))
|
|
|
|
np_out = np.bincount(inp_vals, minlength=size, weights=inp_weight)
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.sparse_bincount(
|
|
indices=inp_indices,
|
|
values=inp_vals,
|
|
dense_shape=[num_rows],
|
|
size=size,
|
|
weights=inp_weight)))
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_sparse_bincount_all_binary(self, dtype):
|
|
np.random.seed(42)
|
|
num_rows = 128
|
|
size = 10
|
|
n_elems = 4096
|
|
inp_indices = np.random.randint(0, num_rows, (n_elems,))
|
|
inp_vals = np.random.randint(0, size, (n_elems,), dtype=dtype)
|
|
|
|
np_out = np.ones((size,))
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.sparse_bincount(
|
|
indices=inp_indices,
|
|
values=inp_vals,
|
|
dense_shape=[num_rows],
|
|
size=size,
|
|
weights=[],
|
|
binary_output=True)))
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_sparse_bincount_all_binary_weights(self, dtype):
|
|
np.random.seed(42)
|
|
num_rows = 128
|
|
size = 10
|
|
n_elems = 4096
|
|
inp_indices = np.random.randint(0, num_rows, (n_elems,))
|
|
inp_vals = np.random.randint(0, size, (n_elems,), dtype=dtype)
|
|
inp_weight = np.random.random((n_elems,))
|
|
|
|
np_out = np.ones((size,))
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.sparse_bincount(
|
|
indices=inp_indices,
|
|
values=inp_vals,
|
|
dense_shape=[num_rows],
|
|
size=size,
|
|
weights=inp_weight,
|
|
binary_output=True)))
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_sparse_bincount_col_reduce_count(self, dtype):
|
|
num_rows = 128
|
|
num_cols = 27
|
|
size = 100
|
|
np.random.seed(42)
|
|
inp = np.random.randint(0, size, (num_rows, num_cols), dtype=dtype)
|
|
np_out = np.reshape(
|
|
np.concatenate(
|
|
[np.bincount(inp[j, :], minlength=size) for j in range(num_rows)],
|
|
axis=0), (num_rows, size))
|
|
# from_dense will filter out 0s.
|
|
inp = inp + 1
|
|
# from_dense will cause OOM in GPU.
|
|
with ops.device("/CPU:0"):
|
|
inp_sparse = sparse_ops.from_dense(inp)
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.sparse_bincount(
|
|
indices=inp_sparse.indices,
|
|
values=inp_sparse.values - 1,
|
|
dense_shape=inp_sparse.dense_shape,
|
|
size=size,
|
|
weights=[])))
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_sparse_bincount_col_reduce_binary(self, dtype):
|
|
num_rows = 128
|
|
num_cols = 27
|
|
size = 100
|
|
np.random.seed(42)
|
|
inp = np.random.randint(0, size, (num_rows, num_cols), dtype=dtype)
|
|
np_out = np.reshape(
|
|
np.concatenate([
|
|
np.where(np.bincount(inp[j, :], minlength=size) > 0, 1, 0)
|
|
for j in range(num_rows)
|
|
],
|
|
axis=0), (num_rows, size))
|
|
# from_dense will filter out 0s.
|
|
inp = inp + 1
|
|
# from_dense will cause OOM in GPU.
|
|
with ops.device("/CPU:0"):
|
|
inp_sparse = sparse_ops.from_dense(inp)
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.sparse_bincount(
|
|
indices=inp_sparse.indices,
|
|
values=inp_sparse.values - 1,
|
|
dense_shape=inp_sparse.dense_shape,
|
|
size=size,
|
|
weights=[],
|
|
binary_output=True)))
|
|
|
|
|
|
class RaggedBincountOpTest(test_util.TensorFlowTestCase,
|
|
parameterized.TestCase):
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_ragged_bincount_count(self, dtype):
|
|
x = ragged_factory_ops.constant([[], [], [3, 0, 1], [], [5, 0, 4, 4]])
|
|
expected_output = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0,
|
|
0], [1, 1, 0, 1, 0, 0],
|
|
[0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 2, 1]]
|
|
self.assertAllEqual(
|
|
expected_output,
|
|
self.evaluate(
|
|
gen_math_ops.ragged_bincount(
|
|
splits=x.row_splits, values=x.values, weights=[], size=6)))
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_ragged_bincount_binary(self, dtype):
|
|
x = ragged_factory_ops.constant([[], [], [3, 0, 1], [], [5, 0, 4, 4]])
|
|
expected_output = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0,
|
|
0], [1, 1, 0, 1, 0, 0],
|
|
[0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 1, 1]]
|
|
self.assertAllEqual(
|
|
expected_output,
|
|
self.evaluate(
|
|
gen_math_ops.ragged_bincount(
|
|
splits=x.row_splits,
|
|
values=x.values,
|
|
weights=[],
|
|
size=6,
|
|
binary_output=True)))
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_ragged_bincount_count_with_weights(self, dtype):
|
|
x = ragged_factory_ops.constant([[], [], [3, 0, 1], [], [5, 0, 4, 4]])
|
|
weights = ragged_factory_ops.constant([[], [], [.1, .2, .3], [],
|
|
[.2, .5, .6, .3]])
|
|
expected_output = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
|
|
[.2, .3, 0, .1, 0, 0], [0, 0, 0, 0, 0, 0],
|
|
[.5, 0, 0, 0, .9, .2]]
|
|
self.assertAllClose(
|
|
expected_output,
|
|
self.evaluate(
|
|
gen_math_ops.ragged_bincount(
|
|
splits=x.row_splits,
|
|
values=x.values,
|
|
weights=weights.values,
|
|
size=6)))
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_ragged_bincount_count_np(self, dtype):
|
|
np.random.seed(42)
|
|
num_rows = 128
|
|
num_cols = 27
|
|
size = 1000
|
|
inp = np.random.randint(0, size, (num_rows, num_cols), dtype=dtype)
|
|
np_out = np.reshape(
|
|
np.concatenate(
|
|
[np.bincount(inp[j, :], minlength=size) for j in range(num_rows)],
|
|
axis=0), (num_rows, size))
|
|
x = ragged_tensor.RaggedTensor.from_tensor(inp)
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.ragged_bincount(
|
|
splits=x.row_splits, values=x.values, weights=[], size=size)))
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_ragged_bincount_count_np_with_weights(self, dtype):
|
|
np.random.seed(42)
|
|
num_rows = 128
|
|
num_cols = 27
|
|
size = 1000
|
|
inp = np.random.randint(0, size, (num_rows, num_cols), dtype=dtype)
|
|
np_weight = np.random.random((num_rows, num_cols))
|
|
np_out = np.reshape(
|
|
np.concatenate([
|
|
np.bincount(inp[j, :], weights=np_weight[j, :], minlength=size)
|
|
for j in range(num_rows)
|
|
],
|
|
axis=0), (num_rows, size))
|
|
x = ragged_tensor.RaggedTensor.from_tensor(inp)
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.ragged_bincount(
|
|
splits=x.row_splits,
|
|
values=x.values,
|
|
weights=np_weight,
|
|
size=size)))
|
|
|
|
@parameterized.parameters([{
|
|
"dtype": np.int32,
|
|
}, {
|
|
"dtype": np.int64,
|
|
}])
|
|
def test_ragged_bincount_binary_np_with_weights(self, dtype):
|
|
np.random.seed(42)
|
|
num_rows = 128
|
|
num_cols = 27
|
|
size = 1000
|
|
inp = np.random.randint(0, size, (num_rows, num_cols), dtype=dtype)
|
|
np_out = np.reshape(
|
|
np.concatenate([
|
|
np.where(np.bincount(inp[j, :], minlength=size) > 0, 1, 0)
|
|
for j in range(num_rows)
|
|
],
|
|
axis=0), (num_rows, size))
|
|
x = ragged_tensor.RaggedTensor.from_tensor(inp)
|
|
self.assertAllEqual(
|
|
np_out,
|
|
self.evaluate(
|
|
gen_math_ops.ragged_bincount(
|
|
splits=x.row_splits,
|
|
values=x.values,
|
|
weights=[],
|
|
size=size,
|
|
binary_output=True)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
googletest.main()
|