Instead of using def_function, in test we can parameterize with these two objects to test both tf.function and eager execution. PiperOrigin-RevId: 351420316 Change-Id: I037d1678ca843f6df88694981efd4519c2947cd3
202 lines
7.8 KiB
Python
202 lines
7.8 KiB
Python
# Lint as: python3
|
|
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for tensorflow.python.distribute.combinations."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import unittest
|
|
|
|
from absl.testing import parameterized
|
|
|
|
from tensorflow.python.distribute import combinations
|
|
from tensorflow.python.distribute import test_util
|
|
from tensorflow.python.distribute.cluster_resolver import tfconfig_cluster_resolver
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.framework import combinations as framework_combinations
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class ClusterCombinationTest(test.TestCase, parameterized.TestCase):
|
|
# For this test we need to use `framework.test_combinations` because our
|
|
# `generate` eats the cluster parameters.
|
|
#
|
|
# Note that we don't have a standalone combination for ClusterParameters, so
|
|
# we should use GPUCombination which contains it.
|
|
|
|
@framework_combinations.generate(
|
|
framework_combinations.combine(distribution=[
|
|
combinations.NamedDistribution(
|
|
"HasClusterParams", lambda: None, has_chief=True, num_workers=2),
|
|
]),
|
|
test_combinations=(combinations.ClusterCombination(),))
|
|
def testClusterParams(self, distribution, has_chief, num_workers):
|
|
self.assertTrue(has_chief)
|
|
self.assertEqual(num_workers, 2)
|
|
|
|
@framework_combinations.generate(
|
|
framework_combinations.combine(distribution=[
|
|
combinations.NamedDistribution("NoClusterParams", lambda: None),
|
|
]),
|
|
test_combinations=(combinations.ClusterCombination(),))
|
|
def testClusterParamsHasDefault(self, distribution, has_chief, num_workers):
|
|
self.assertFalse(has_chief)
|
|
self.assertEqual(num_workers, 1)
|
|
|
|
@framework_combinations.generate(
|
|
framework_combinations.combine(v=1),
|
|
test_combinations=(combinations.ClusterCombination(),))
|
|
def testClusterParamsNoStrategy(self, v, has_chief, num_workers):
|
|
self.assertFalse(has_chief)
|
|
self.assertEqual(num_workers, 1)
|
|
|
|
@framework_combinations.generate(
|
|
framework_combinations.combine(distribution=[
|
|
combinations.NamedDistribution(
|
|
"WithClusterParams", lambda: None, has_chief=True, num_workers=2),
|
|
combinations.NamedDistribution("WithoutClusterParams", lambda: None),
|
|
]),
|
|
test_combinations=(combinations.ClusterCombination(),))
|
|
def testClusterParamsAreOptional(self, distribution):
|
|
# If combinations library doesn't raise an exception, the test is passed.
|
|
pass
|
|
|
|
@framework_combinations.generate(
|
|
framework_combinations.combine(
|
|
ds1=combinations.NamedDistribution(
|
|
"Strategy1", lambda: None, has_chief=True, num_workers=0),
|
|
ds2=combinations.NamedDistribution(
|
|
"Strategy2", lambda: None, has_chief=False, num_workers=1),
|
|
ds3=combinations.NamedDistribution(
|
|
"Strategy3", lambda: None, has_chief=True, num_workers=0),
|
|
),
|
|
test_combinations=(combinations.ClusterCombination(),))
|
|
def testMultipleDistributionSingleWorker(self, ds1, ds2, ds3):
|
|
# If combinations library doesn't raise an exception, the test is passed.
|
|
pass
|
|
|
|
@combinations.generate(combinations.combine(num_workers=2,))
|
|
def testUseWithoutStrategy(self):
|
|
# There's no perfect way to check if the test runs in a subprocess. We
|
|
# approximate by checking the presence of TF_CONFIG, which is normally not
|
|
# set to the main process.
|
|
self.assertNotEqual(os.getenv("TF_CONFIG"), "")
|
|
|
|
|
|
@combinations.generate(combinations.combine(num_workers=2))
|
|
class ClusterCombinationTestEnvTest(test.TestCase, parameterized.TestCase):
|
|
|
|
def setUp(self):
|
|
# Note that test case fixtures are executed in both the main process and
|
|
# worker processes.
|
|
super().setUp()
|
|
if combinations.in_main_process():
|
|
combinations.env().tf_data_service_dispatcher = "localhost"
|
|
|
|
def testTfDataServiceDispatcher(self):
|
|
self.assertEqual(combinations.env().tf_data_service_dispatcher, "localhost")
|
|
|
|
def testUpdateEnvInWorker(self):
|
|
with self.assertRaises(ValueError):
|
|
combinations.env().tf_data_service_dispatcher = "localhost"
|
|
|
|
|
|
# unittest.expectedFailure doesn't work with parameterized test methods, so we
|
|
# have to decorate the class instead.
|
|
@unittest.expectedFailure
|
|
class ClusterParametersShouldFailTest(test.TestCase, parameterized.TestCase):
|
|
|
|
@framework_combinations.generate(
|
|
framework_combinations.combine(
|
|
ds1=combinations.NamedDistribution(
|
|
"Strategy1", lambda: None, has_chief=True, num_workers=2),
|
|
ds2=combinations.NamedDistribution(
|
|
"Strategy2", lambda: None, has_chief=True, num_workers=2),
|
|
),
|
|
test_combinations=(combinations.ClusterCombination(),))
|
|
def testMultipleDistributionMultiWorker(self, ds1, ds2):
|
|
# combinations library should raise an exception.
|
|
pass
|
|
|
|
|
|
# Tests that we *actually* run the test method in multiple workers instead of
|
|
# just passing silently. More importantly, it verifies that the test can fail.
|
|
# Note that unittest.expectedFailure doesn't work with parameterized test
|
|
# methods, so we have to decorate the class instead.
|
|
@unittest.expectedFailure
|
|
class CombinationsExpectedFailureTest(test.TestCase, parameterized.TestCase):
|
|
|
|
@combinations.generate(
|
|
combinations.combine(distribution=[
|
|
combinations.NamedDistribution(
|
|
"OneChiefOneWorker", lambda: None, has_chief=True, num_workers=1),
|
|
combinations.NamedDistribution(
|
|
"TwoWorkers", lambda: None, has_chief=False, num_workers=2),
|
|
]))
|
|
def testMultiWorkerCanFail(self, distribution):
|
|
resolver = tfconfig_cluster_resolver.TFConfigClusterResolver()
|
|
# This should fail.
|
|
self.assertIsNone(resolver.task_id)
|
|
|
|
|
|
# Tests that we *actually* run the test method in multiple workers instead of
|
|
# just passing silently. More importantly, it verifies that the test can fail.
|
|
# Note that unittest.expectedFailure doesn't work with parameterized test
|
|
# methods, so we have to decorate the class instead.
|
|
@unittest.expectedFailure
|
|
@combinations.generate(
|
|
combinations.combine(distribution=[
|
|
combinations.NamedDistribution(
|
|
"OneChiefOneWorker", lambda: None, has_chief=True, num_workers=1),
|
|
combinations.NamedDistribution(
|
|
"TwoWorkers", lambda: None, has_chief=False, num_workers=2),
|
|
]))
|
|
class CombinationsOnClassMultiWorkerExpectedFailureTest(test.TestCase,
|
|
parameterized.TestCase):
|
|
|
|
def test(self, distribution):
|
|
resolver = tfconfig_cluster_resolver.TFConfigClusterResolver()
|
|
# This should fail.
|
|
self.assertIsNone(resolver.task_id)
|
|
|
|
|
|
class TfFunctionTest(test.TestCase, parameterized.TestCase):
|
|
|
|
@combinations.generate(
|
|
combinations.combine(
|
|
tf_function_1=combinations.tf_function,
|
|
tf_function_2=combinations.no_tf_function,
|
|
mode="eager",
|
|
))
|
|
def testFunc(self, tf_function_1, tf_function_2):
|
|
|
|
@tf_function_1
|
|
def foo():
|
|
self.assertFalse(context.executing_eagerly())
|
|
|
|
@tf_function_2
|
|
def bar():
|
|
self.assertTrue(context.executing_eagerly())
|
|
|
|
foo()
|
|
bar()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_util.main()
|