STT-tensorflow/tensorflow/python/autograph/converters/conditional_expressions.py
Dan Moldovan 53215ab702 Use the nonlocal mechanism for if statements. This is the same mechanism used by for and while loops and it allows reusing much of the code.
This required the ternary if operator to be split in a separate implementation, but that better accounts for its different nature.
This should also allow more consistent verification and error messages throughout.

PiperOrigin-RevId: 312360755
Change-Id: I57989c6cd40a16653521e18ccf21f2b0e994bd96
2020-05-19 15:06:45 -07:00

51 lines
1.7 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Converts the ternary conditional operator."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gast
from tensorflow.python.autograph.core import converter
from tensorflow.python.autograph.pyct import parser
from tensorflow.python.autograph.pyct import templates
class ConditionalExpressionTransformer(converter.Base):
"""Converts conditional expressions to functional form."""
def visit_IfExp(self, node):
template = '''
ag__.if_exp(
test,
lambda: true_expr,
lambda: false_expr,
expr_repr)
'''
expr_repr = parser.unparse(node.test, include_encoding_marker=False).strip()
return templates.replace_as_expression(
template,
test=node.test,
true_expr=node.body,
false_expr=node.orelse,
expr_repr=gast.Constant(expr_repr, kind=None))
def transform(node, ctx):
node = ConditionalExpressionTransformer(ctx).visit(node)
return node