STT-tensorflow/tensorflow/lite/micro/testing/generate_test_models.py
Karim Nosir 85eac59cd1 Remove explicit line "experimental_new_converter = True" the converter launched and is now the default.
PiperOrigin-RevId: 318413489
Change-Id: I0e07c1616a6b717debfb84fbc650093f3f0f6437
2020-06-25 22:39:54 -07:00

81 lines
2.8 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python utility script to generate unit test model data."""
# Steps to regenerate model test data:
# TODO(b/158011574): Do these steps in the script here instead of manually.
# 1.) Run this script
# 2.) Hexdump the model into a .h/.cc file:
# xxd -i /tmp/tf_micro_conv_test_model.tflite > /tmp/temp.cc
# 3.) Copy/replace contents of temp.cc into desired header/source files (e.g.
# test_conv_model.h/.cc
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
import numpy as np
import tensorflow.compat.v2 as tf
def generate_conv_model():
"""Creates a basic Keras model and converts to tflite.
This model does not make any relevant classifications. It only exists to
generate a model that is designed to run on embedded devices.
"""
input_shape = (16, 16, 1)
model = tf.keras.models.Sequential()
model.add(
tf.keras.layers.Conv2D(16, 3, activation="relu", input_shape=input_shape))
model.add(tf.keras.layers.Conv2D(32, 3, activation="relu"))
model.add(tf.keras.layers.MaxPooling2D(2))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(10))
model.compile(
optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
model.summary()
# Test with random data
data_x = np.random.rand(12, 16, 16, 1)
data_y = np.random.randint(2, size=(12, 10))
model.fit(data_x, data_y, epochs=5)
def representative_dataset_gen():
for _ in range(12):
yield [np.random.rand(16, 16).reshape(1, 16, 16, 1).astype(np.float32)]
# Now convert to a TFLite model with full int8 quantization:
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.int8
converter.inference_output_type = tf.int8
converter.representative_dataset = representative_dataset_gen
tflite_model = converter.convert()
open("/tmp/tf_micro_conv_test_model.int8.tflite", "wb").write(tflite_model)
def main(argv):
del argv # Unused for now
generate_conv_model()
if __name__ == "__main__":
app.run(main)