Additionally, * remove the global error reporter from micro_test.h * change all the kernel tests to make use of MicroPrintf * add a GetMicroErrorReporter() function that returns a pointer to a singleton MicroErrorReporter object. - This enables the current change to not spread beyond the tests. - Even if we move large parts of the TFLM code to make use MicroPrintf (in favor of error_reporter), there is still going to be shared TfLite/TFLM code that will need an error_reporter. Next steps, if we want to continue down this path * remove the error_reporter from the TFLM functions and class implementations and instead use either MicroPrintf or GetMicroErrorReporter() * Add new APIs that do not have error_reporter to the TFLM classes and functions. * Ask users to switch to the new error_reporter-free APIs and depreacte the APIs that do make use of the error_reporter. * Remove the error_reporter APIs completely. Prior to this change, we would have to use the ErrorReporter interface for all the logging. This was problematic on a few fronts: * The name ErrorReporter was often misleading since sometimes we just want to log, even when there isn't an error. * For even the simplest logging, we need to have access to an ErrorReporter object which means that pointers to an ErrorReporter are part of most classes in TFLM. With this change, we can simply call MicroPrintf(), and it can be a no-op if binary size is important. If we find this approach useful, we can consider incrementally reducing the usage of ErrorReporter from TFLM. Progress towards http://b/158205789 starting to address review comments. re-do micro_test.h
459 lines
18 KiB
C++
459 lines
18 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/micro/all_ops_resolver.h"
|
|
#include "tensorflow/lite/micro/debug_log.h"
|
|
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
|
|
#include "tensorflow/lite/micro/test_helpers.h"
|
|
#include "tensorflow/lite/micro/testing/micro_test.h"
|
|
|
|
namespace tflite {
|
|
namespace testing {
|
|
|
|
void TestSplitTwoOutputsFloat(
|
|
const int* input_dims_data, const float* input_data,
|
|
const int* axis_dims_data, const int32_t* axis_data,
|
|
const int* output1_dims_data, const float* expected_output1_data,
|
|
const int* output2_dims_data, const float* expected_output2_data,
|
|
float* output1_data, float* output2_data) {
|
|
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
|
TfLiteIntArray* axis_dims = IntArrayFromInts(axis_dims_data);
|
|
TfLiteIntArray* output1_dims = IntArrayFromInts(output1_dims_data);
|
|
TfLiteIntArray* output2_dims = IntArrayFromInts(output2_dims_data);
|
|
const int output1_dims_count = ElementCount(*output1_dims);
|
|
const int output2_dims_count = ElementCount(*output2_dims);
|
|
|
|
constexpr int input_size = 1;
|
|
constexpr int output_size = 2;
|
|
constexpr int axis_size = 1;
|
|
constexpr int tensors_size = input_size + output_size + axis_size;
|
|
TfLiteTensor tensors[tensors_size] = {
|
|
CreateTensor(axis_data, axis_dims), CreateTensor(input_data, input_dims),
|
|
CreateTensor(output1_data, output1_dims),
|
|
CreateTensor(output2_data, output2_dims)};
|
|
|
|
// Currently only support constant axis tensor.
|
|
tensors[0].allocation_type = kTfLiteMmapRo;
|
|
// Place a unique value in the uninitialized output buffer.
|
|
for (int i = 0; i < output1_dims_count; ++i) {
|
|
output1_data[i] = 23;
|
|
}
|
|
|
|
for (int i = 0; i < output2_dims_count; ++i) {
|
|
output2_data[i] = 23;
|
|
}
|
|
|
|
int inputs_array_data[] = {2, 0, 1};
|
|
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
|
int outputs_array_data[] = {2, 2, 3};
|
|
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
|
|
|
const TfLiteRegistration registration = tflite::ops::micro::Register_SPLIT();
|
|
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
|
|
outputs_array, nullptr);
|
|
|
|
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
|
|
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
|
|
|
|
for (int i = 0; i < output1_dims_count; ++i) {
|
|
TF_LITE_MICRO_EXPECT_NEAR(expected_output1_data[i], output1_data[i], 1e-5f);
|
|
}
|
|
|
|
for (int i = 0; i < output2_dims_count; ++i) {
|
|
TF_LITE_MICRO_EXPECT_NEAR(expected_output2_data[i], output2_data[i], 1e-5f);
|
|
}
|
|
}
|
|
|
|
void TestSplitFourOutputsFloat(
|
|
const int* input_dims_data, const float* input_data,
|
|
const int* axis_dims_data, const int32_t* axis_data,
|
|
const int* output1_dims_data, const float* expected_output1_data,
|
|
const int* output2_dims_data, const float* expected_output2_data,
|
|
const int* output3_dims_data, const float* expected_output3_data,
|
|
const int* output4_dims_data, const float* expected_output4_data,
|
|
float* output1_data, float* output2_data, float* output3_data,
|
|
float* output4_data) {
|
|
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
|
TfLiteIntArray* axis_dims = IntArrayFromInts(axis_dims_data);
|
|
TfLiteIntArray* output1_dims = IntArrayFromInts(output1_dims_data);
|
|
TfLiteIntArray* output2_dims = IntArrayFromInts(output2_dims_data);
|
|
TfLiteIntArray* output3_dims = IntArrayFromInts(output3_dims_data);
|
|
TfLiteIntArray* output4_dims = IntArrayFromInts(output4_dims_data);
|
|
const int output1_dims_count = ElementCount(*output1_dims);
|
|
const int output2_dims_count = ElementCount(*output2_dims);
|
|
const int output3_dims_count = ElementCount(*output3_dims);
|
|
const int output4_dims_count = ElementCount(*output4_dims);
|
|
|
|
constexpr int input_size = 1;
|
|
constexpr int output_size = 4;
|
|
constexpr int axis_size = 1;
|
|
constexpr int tensors_size = input_size + output_size + axis_size;
|
|
TfLiteTensor tensors[tensors_size] = {
|
|
CreateTensor(axis_data, axis_dims),
|
|
CreateTensor(input_data, input_dims),
|
|
CreateTensor(output1_data, output1_dims),
|
|
CreateTensor(output2_data, output2_dims),
|
|
CreateTensor(output3_data, output1_dims),
|
|
CreateTensor(output4_data, output1_dims)};
|
|
|
|
// Currently only support constant axis tensor.
|
|
tensors[0].allocation_type = kTfLiteMmapRo;
|
|
// Place a unique value in the uninitialized output buffer.
|
|
for (int i = 0; i < output1_dims_count; ++i) {
|
|
output1_data[i] = 23;
|
|
}
|
|
for (int i = 0; i < output2_dims_count; ++i) {
|
|
output2_data[i] = 23;
|
|
}
|
|
for (int i = 0; i < output3_dims_count; ++i) {
|
|
output3_data[i] = 23;
|
|
}
|
|
for (int i = 0; i < output4_dims_count; ++i) {
|
|
output4_data[i] = 23;
|
|
}
|
|
|
|
int inputs_array_data[] = {2, 0, 1};
|
|
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
|
int outputs_array_data[] = {4, 2, 3, 4, 5};
|
|
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
|
|
|
const TfLiteRegistration registration = tflite::ops::micro::Register_SPLIT();
|
|
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
|
|
outputs_array, nullptr);
|
|
|
|
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
|
|
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
|
|
|
|
for (int i = 0; i < output1_dims_count; ++i) {
|
|
TF_LITE_MICRO_EXPECT_NEAR(expected_output1_data[i], output1_data[i], 1e-5f);
|
|
}
|
|
for (int i = 0; i < output2_dims_count; ++i) {
|
|
TF_LITE_MICRO_EXPECT_NEAR(expected_output2_data[i], output2_data[i], 1e-5f);
|
|
}
|
|
for (int i = 0; i < output3_dims_count; ++i) {
|
|
TF_LITE_MICRO_EXPECT_NEAR(expected_output3_data[i], output3_data[i], 1e-5f);
|
|
}
|
|
for (int i = 0; i < output4_dims_count; ++i) {
|
|
TF_LITE_MICRO_EXPECT_NEAR(expected_output4_data[i], output4_data[i], 1e-5f);
|
|
}
|
|
}
|
|
|
|
void TestSplitTwoOutputsQuantized(
|
|
const int* input_dims_data, const uint8_t* input_data,
|
|
const int* axis_dims_data, const int32_t* axis_data,
|
|
const int* output1_dims_data, const uint8_t* expected_output1_data,
|
|
const int* output2_dims_data, const uint8_t* expected_output2_data,
|
|
uint8_t* output1_data, uint8_t* output2_data) {
|
|
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
|
TfLiteIntArray* axis_dims = IntArrayFromInts(axis_dims_data);
|
|
TfLiteIntArray* output1_dims = IntArrayFromInts(output1_dims_data);
|
|
TfLiteIntArray* output2_dims = IntArrayFromInts(output2_dims_data);
|
|
const int output1_dims_count = ElementCount(*output1_dims);
|
|
const int output2_dims_count = ElementCount(*output2_dims);
|
|
|
|
constexpr int input_size = 1;
|
|
constexpr int output_size = 2;
|
|
constexpr int axis_size = 1;
|
|
constexpr int tensors_size = input_size + output_size + axis_size;
|
|
TfLiteTensor tensors[tensors_size] = {
|
|
CreateTensor(axis_data, axis_dims),
|
|
CreateQuantizedTensor(input_data, input_dims, 0, 10),
|
|
CreateQuantizedTensor(output1_data, output1_dims, 0, 10),
|
|
CreateQuantizedTensor(output2_data, output2_dims, 0, 10)};
|
|
|
|
// Currently only support constant axis tensor.
|
|
tensors[0].allocation_type = kTfLiteMmapRo;
|
|
|
|
// Place a unique value in the uninitialized output buffer.
|
|
for (int i = 0; i < output1_dims_count; ++i) {
|
|
output1_data[i] = 23;
|
|
}
|
|
|
|
for (int i = 0; i < output2_dims_count; ++i) {
|
|
output2_data[i] = 23;
|
|
}
|
|
|
|
int inputs_array_data[] = {2, 0, 1};
|
|
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
|
int outputs_array_data[] = {2, 2, 3};
|
|
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
|
|
|
const TfLiteRegistration registration = tflite::ops::micro::Register_SPLIT();
|
|
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
|
|
outputs_array, nullptr);
|
|
|
|
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
|
|
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
|
|
|
|
for (int i = 0; i < output1_dims_count; ++i) {
|
|
TF_LITE_MICRO_EXPECT_EQ(expected_output1_data[i], output1_data[i]);
|
|
}
|
|
|
|
for (int i = 0; i < output2_dims_count; ++i) {
|
|
TF_LITE_MICRO_EXPECT_EQ(expected_output2_data[i], output2_data[i]);
|
|
}
|
|
}
|
|
|
|
void TestSplitTwoOutputsQuantized32(
|
|
const int* input_dims_data, const int32_t* input_data,
|
|
const int* axis_dims_data, const int32_t* axis_data,
|
|
const int* output1_dims_data, const int32_t* expected_output1_data,
|
|
const int* output2_dims_data, const int32_t* expected_output2_data,
|
|
int32_t* output1_data, int32_t* output2_data) {
|
|
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
|
TfLiteIntArray* axis_dims = IntArrayFromInts(axis_dims_data);
|
|
TfLiteIntArray* output1_dims = IntArrayFromInts(output1_dims_data);
|
|
TfLiteIntArray* output2_dims = IntArrayFromInts(output2_dims_data);
|
|
const int output1_dims_count = ElementCount(*output1_dims);
|
|
const int output2_dims_count = ElementCount(*output2_dims);
|
|
|
|
constexpr int input_size = 1;
|
|
constexpr int output_size = 2;
|
|
constexpr int axis_size = 1;
|
|
constexpr int tensors_size = input_size + output_size + axis_size;
|
|
TfLiteTensor tensors[tensors_size] = {
|
|
CreateTensor(axis_data, axis_dims), CreateTensor(input_data, input_dims),
|
|
CreateTensor(output1_data, output1_dims),
|
|
CreateTensor(output2_data, output2_dims)};
|
|
|
|
// Currently only support constant axis tensor.
|
|
tensors[0].allocation_type = kTfLiteMmapRo;
|
|
|
|
// Place a unique value in the uninitialized output buffer.
|
|
for (int i = 0; i < output1_dims_count; ++i) {
|
|
output1_data[i] = 23;
|
|
}
|
|
|
|
for (int i = 0; i < output2_dims_count; ++i) {
|
|
output2_data[i] = 23;
|
|
}
|
|
|
|
int inputs_array_data[] = {2, 0, 1};
|
|
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
|
int outputs_array_data[] = {2, 2, 3};
|
|
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
|
|
|
const TfLiteRegistration registration = tflite::ops::micro::Register_SPLIT();
|
|
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
|
|
outputs_array, nullptr);
|
|
|
|
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
|
|
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
|
|
|
|
for (int i = 0; i < output1_dims_count; ++i) {
|
|
TF_LITE_MICRO_EXPECT_EQ(expected_output1_data[i], output1_data[i]);
|
|
}
|
|
|
|
for (int i = 0; i < output2_dims_count; ++i) {
|
|
TF_LITE_MICRO_EXPECT_EQ(expected_output2_data[i], output2_data[i]);
|
|
}
|
|
}
|
|
|
|
} // namespace testing
|
|
} // namespace tflite
|
|
|
|
TF_LITE_MICRO_TESTS_BEGIN
|
|
|
|
TF_LITE_MICRO_TEST(TwoSplitFourDimensionalAxisZero) {
|
|
const int input_shape[] = {4, 2, 2, 2, 2};
|
|
const float input_data[] = {1, 2, 3, 4, 5, 6, 7, 8,
|
|
9, 10, 11, 12, 13, 14, 15, 16};
|
|
const int axis_shape[] = {1, 1};
|
|
const int32_t axis_data[] = {0};
|
|
const int output1_shape[] = {4, 1, 2, 2, 2};
|
|
const float golden1[] = {1, 2, 3, 4, 5, 6, 7, 8};
|
|
const int output2_shape[] = {4, 1, 2, 2, 2};
|
|
const float golden2[] = {9, 10, 11, 12, 13, 14, 15, 16};
|
|
|
|
constexpr int output1_dims_count = 8;
|
|
constexpr int output2_dims_count = 8;
|
|
float output1_data[output1_dims_count];
|
|
float output2_data[output2_dims_count];
|
|
tflite::testing::TestSplitTwoOutputsFloat(
|
|
input_shape, input_data, axis_shape, axis_data, output1_shape, golden1,
|
|
output2_shape, golden2, output1_data, output2_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(TwoSplitFourDimensionalAxisOne) {
|
|
const int input_shape[] = {4, 2, 2, 2, 2};
|
|
const float input_data[] = {1, 2, 3, 4, 5, 6, 7, 8,
|
|
9, 10, 11, 12, 13, 14, 15, 16};
|
|
const int axis_shape[] = {1, 1};
|
|
const int32_t axis_data[] = {1};
|
|
const int output1_shape[] = {4, 2, 1, 2, 2};
|
|
const float golden1[] = {1, 2, 3, 4, 9, 10, 11, 12};
|
|
const int output2_shape[] = {4, 2, 1, 2, 2};
|
|
const float golden2[] = {5, 6, 7, 8, 13, 14, 15, 16};
|
|
|
|
constexpr int output1_dims_count = 8;
|
|
constexpr int output2_dims_count = 8;
|
|
float output1_data[output1_dims_count];
|
|
float output2_data[output2_dims_count];
|
|
tflite::testing::TestSplitTwoOutputsFloat(
|
|
input_shape, input_data, axis_shape, axis_data, output1_shape, golden1,
|
|
output2_shape, golden2, output1_data, output2_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(TwoSplitFourDimensionalAxisTwo) {
|
|
const int input_shape[] = {4, 2, 2, 2, 2};
|
|
const float input_data[] = {1, 2, 3, 4, 5, 6, 7, 8,
|
|
9, 10, 11, 12, 13, 14, 15, 16};
|
|
const int axis_shape[] = {1, 1};
|
|
const int32_t axis_data[] = {2};
|
|
const int output1_shape[] = {4, 2, 2, 1, 2};
|
|
const float golden1[] = {1, 2, 5, 6, 9, 10, 13, 14};
|
|
const int output2_shape[] = {4, 2, 2, 1, 2};
|
|
const float golden2[] = {3, 4, 7, 8, 11, 12, 15, 16};
|
|
|
|
constexpr int output1_dims_count = 8;
|
|
constexpr int output2_dims_count = 8;
|
|
float output1_data[output1_dims_count];
|
|
float output2_data[output2_dims_count];
|
|
tflite::testing::TestSplitTwoOutputsFloat(
|
|
input_shape, input_data, axis_shape, axis_data, output1_shape, golden1,
|
|
output2_shape, golden2, output1_data, output2_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(TwoSplitFourDimensionalAxisThree) {
|
|
const int input_shape[] = {4, 2, 2, 2, 2};
|
|
const float input_data[] = {1, 2, 3, 4, 5, 6, 7, 8,
|
|
9, 10, 11, 12, 13, 14, 15, 16};
|
|
const int axis_shape[] = {1, 1};
|
|
const int32_t axis_data[] = {3};
|
|
const int output1_shape[] = {4, 2, 2, 2, 1};
|
|
const float golden1[] = {1, 3, 5, 7, 9, 11, 13, 15};
|
|
const int output2_shape[] = {4, 2, 2, 2, 1};
|
|
const float golden2[] = {2, 4, 6, 8, 10, 12, 14, 16};
|
|
|
|
constexpr int output1_dims_count = 8;
|
|
constexpr int output2_dims_count = 8;
|
|
float output1_data[output1_dims_count];
|
|
float output2_data[output2_dims_count];
|
|
tflite::testing::TestSplitTwoOutputsFloat(
|
|
input_shape, input_data, axis_shape, axis_data, output1_shape, golden1,
|
|
output2_shape, golden2, output1_data, output2_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(TwoSplitFourDimensionalNegativeAxis) {
|
|
const int input_shape[] = {4, 2, 2, 2, 2};
|
|
const float input_data[] = {1, 2, 3, 4, 5, 6, 7, 8,
|
|
9, 10, 11, 12, 13, 14, 15, 16};
|
|
const int axis_shape[] = {1, 1};
|
|
const int32_t axis_data[] = {-4};
|
|
const int output1_shape[] = {4, 1, 2, 2, 2};
|
|
const float golden1[] = {1, 2, 3, 4, 5, 6, 7, 8};
|
|
const int output2_shape[] = {4, 1, 2, 2, 2};
|
|
const float golden2[] = {9, 10, 11, 12, 13, 14, 15, 16};
|
|
|
|
constexpr int output1_dims_count = 8;
|
|
constexpr int output2_dims_count = 8;
|
|
float output1_data[output1_dims_count];
|
|
float output2_data[output2_dims_count];
|
|
tflite::testing::TestSplitTwoOutputsFloat(
|
|
input_shape, input_data, axis_shape, axis_data, output1_shape, golden1,
|
|
output2_shape, golden2, output1_data, output2_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(FourSplit) {
|
|
const int input_shape[] = {1, 4};
|
|
const float input_data[] = {1, 2, 3, 4};
|
|
const int axis_shape[] = {1, 1};
|
|
const int32_t axis_data[] = {0};
|
|
const int output1_shape[] = {1, 1};
|
|
const float golden1[] = {1};
|
|
const int output2_shape[] = {1, 1};
|
|
const float golden2[] = {2};
|
|
const int output3_shape[] = {1, 1};
|
|
const float golden3[] = {3};
|
|
const int output4_shape[] = {1, 1};
|
|
const float golden4[] = {4};
|
|
|
|
constexpr int output1_dims_count = 1;
|
|
constexpr int output2_dims_count = 1;
|
|
constexpr int output3_dims_count = 1;
|
|
constexpr int output4_dims_count = 1;
|
|
float output1_data[output1_dims_count];
|
|
float output2_data[output2_dims_count];
|
|
float output3_data[output3_dims_count];
|
|
float output4_data[output4_dims_count];
|
|
tflite::testing::TestSplitFourOutputsFloat(
|
|
input_shape, input_data, axis_shape, axis_data, output1_shape, golden1,
|
|
output2_shape, golden2, output3_shape, golden3, output4_shape, golden4,
|
|
output1_data, output2_data, output3_data, output4_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(TwoSplitOneDimensional) {
|
|
const int input_shape[] = {1, 2};
|
|
const float input_data[] = {1, 2};
|
|
const int axis_shape[] = {1, 1};
|
|
const int32_t axis_data[] = {0};
|
|
const int output1_shape[] = {1, 1};
|
|
const float golden1[] = {1};
|
|
const int output2_shape[] = {1, 1};
|
|
const float golden2[] = {2};
|
|
|
|
constexpr int output1_dims_count = 8;
|
|
constexpr int output2_dims_count = 8;
|
|
float output1_data[output1_dims_count];
|
|
float output2_data[output2_dims_count];
|
|
tflite::testing::TestSplitTwoOutputsFloat(
|
|
input_shape, input_data, axis_shape, axis_data, output1_shape, golden1,
|
|
output2_shape, golden2, output1_data, output2_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(TwoSplitFourDimensionalQuantized) {
|
|
const int input_shape[] = {4, 2, 2, 2, 2};
|
|
const uint8_t input_data[] = {1, 2, 3, 4, 5, 6, 7, 8,
|
|
9, 10, 11, 12, 13, 14, 15, 16};
|
|
const int axis_shape[] = {1, 1};
|
|
const int32_t axis_data[] = {1};
|
|
const int output1_shape[] = {4, 2, 1, 2, 2};
|
|
const uint8_t golden1[] = {1, 2, 3, 4, 9, 10, 11, 12};
|
|
const int output2_shape[] = {4, 2, 1, 2, 2};
|
|
const uint8_t golden2[] = {5, 6, 7, 8, 13, 14, 15, 16};
|
|
|
|
constexpr int output1_dims_count = 8;
|
|
constexpr int output2_dims_count = 8;
|
|
uint8_t output1_data[output1_dims_count];
|
|
uint8_t output2_data[output2_dims_count];
|
|
tflite::testing::TestSplitTwoOutputsQuantized(
|
|
input_shape, input_data, axis_shape, axis_data, output1_shape, golden1,
|
|
output2_shape, golden2, output1_data, output2_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(TwoSplitFourDimensionalQuantized32) {
|
|
const int input_shape[] = {4, 2, 2, 2, 2};
|
|
const int32_t input_data[] = {1, 2, 3, 4, 5, 6, 7, 8,
|
|
9, 10, 11, 12, 13, 14, 15, 16};
|
|
const int axis_shape[] = {1, 1};
|
|
const int32_t axis_data[] = {1};
|
|
const int output1_shape[] = {4, 2, 1, 2, 2};
|
|
const int32_t golden1[] = {1, 2, 3, 4, 9, 10, 11, 12};
|
|
const int output2_shape[] = {4, 2, 1, 2, 2};
|
|
const int32_t golden2[] = {5, 6, 7, 8, 13, 14, 15, 16};
|
|
|
|
constexpr int output1_dims_count = 8;
|
|
constexpr int output2_dims_count = 8;
|
|
int32_t output1_data[output1_dims_count];
|
|
int32_t output2_data[output2_dims_count];
|
|
tflite::testing::TestSplitTwoOutputsQuantized32(
|
|
input_shape, input_data, axis_shape, axis_data, output1_shape, golden1,
|
|
output2_shape, golden2, output1_data, output2_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TESTS_END
|