Additionally, * remove the global error reporter from micro_test.h * change all the kernel tests to make use of MicroPrintf * add a GetMicroErrorReporter() function that returns a pointer to a singleton MicroErrorReporter object. - This enables the current change to not spread beyond the tests. - Even if we move large parts of the TFLM code to make use MicroPrintf (in favor of error_reporter), there is still going to be shared TfLite/TFLM code that will need an error_reporter. Next steps, if we want to continue down this path * remove the error_reporter from the TFLM functions and class implementations and instead use either MicroPrintf or GetMicroErrorReporter() * Add new APIs that do not have error_reporter to the TFLM classes and functions. * Ask users to switch to the new error_reporter-free APIs and depreacte the APIs that do make use of the error_reporter. * Remove the error_reporter APIs completely. Prior to this change, we would have to use the ErrorReporter interface for all the logging. This was problematic on a few fronts: * The name ErrorReporter was often misleading since sometimes we just want to log, even when there isn't an error. * For even the simplest logging, we need to have access to an ErrorReporter object which means that pointers to an ErrorReporter are part of most classes in TFLM. With this change, we can simply call MicroPrintf(), and it can be a no-op if binary size is important. If we find this approach useful, we can consider incrementally reducing the usage of ErrorReporter from TFLM. Progress towards http://b/158205789 starting to address review comments. re-do micro_test.h
195 lines
7.8 KiB
C++
195 lines
7.8 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/micro/kernels/kernel_runner.h"
|
|
#include "tensorflow/lite/micro/test_helpers.h"
|
|
#include "tensorflow/lite/micro/testing/micro_test.h"
|
|
|
|
namespace tflite {
|
|
namespace testing {
|
|
namespace {
|
|
|
|
template <typename T>
|
|
void ValidatePreluGoldens(TfLiteTensor* tensors, int tensors_size,
|
|
const T* golden, const int output_length,
|
|
T* output_data) {
|
|
int inputs_array_data[] = {2, 0, 1};
|
|
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
|
|
int outputs_array_data[] = {1, 2};
|
|
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
|
|
|
|
const TfLiteRegistration registration = tflite::ops::micro::Register_PRELU();
|
|
micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
|
|
outputs_array,
|
|
/*builtin_data=*/nullptr);
|
|
|
|
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
|
|
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
|
|
|
|
for (int i = 0; i < output_length; ++i) {
|
|
TF_LITE_MICRO_EXPECT_NEAR(golden[i], output_data[i], 1e-5f);
|
|
}
|
|
}
|
|
|
|
void TestPreluFloat(const int* input_dims_data, const float* input_data,
|
|
const int* alpha_dims_data, const float* alpha_data,
|
|
const float* expected_output_data,
|
|
const int* output_dims_data, float* output_data) {
|
|
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
|
TfLiteIntArray* alpha_dims = IntArrayFromInts(alpha_dims_data);
|
|
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
|
const int output_dims_count = ElementCount(*output_dims);
|
|
constexpr int inputs_size = 2;
|
|
constexpr int outputs_size = 1;
|
|
constexpr int tensors_size = inputs_size + outputs_size;
|
|
TfLiteTensor tensors[tensors_size] = {
|
|
CreateTensor(input_data, input_dims),
|
|
CreateTensor(alpha_data, alpha_dims),
|
|
CreateTensor(output_data, output_dims),
|
|
};
|
|
|
|
ValidatePreluGoldens(tensors, tensors_size, expected_output_data,
|
|
output_dims_count, output_data);
|
|
}
|
|
|
|
// Template argument T can be either uint8_t or int8_t depending on which type
|
|
// of quantization required to be tested.
|
|
template <typename T>
|
|
void TestPreluQuantized(const int* input_dims_data, const float* input_data,
|
|
T* input_quantized, const float input_scale,
|
|
const int input_zero_point, const int* alpha_dims_data,
|
|
const float* alpha_data, T* alpha_quantized,
|
|
const float alpha_scale, const int alpha_zero_point,
|
|
const float* golden, T* golden_quantized,
|
|
const float output_scale, const int output_zero_point,
|
|
const int* output_dims_data, T* output_data) {
|
|
TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
|
|
TfLiteIntArray* alpha_dims = IntArrayFromInts(alpha_dims_data);
|
|
TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data);
|
|
const int output_dims_count = ElementCount(*output_dims);
|
|
constexpr int inputs_size = 2;
|
|
constexpr int outputs_size = 1;
|
|
constexpr int tensors_size = inputs_size + outputs_size;
|
|
TfLiteTensor tensors[tensors_size] = {
|
|
CreateQuantizedTensor(input_data, input_quantized, input_dims,
|
|
input_scale, input_zero_point),
|
|
CreateQuantizedTensor(alpha_data, alpha_quantized, alpha_dims,
|
|
alpha_scale, alpha_zero_point),
|
|
CreateQuantizedTensor(output_data, output_dims, output_scale,
|
|
output_zero_point),
|
|
};
|
|
|
|
Quantize(golden, golden_quantized, output_dims_count, output_scale,
|
|
output_zero_point);
|
|
|
|
ValidatePreluGoldens(tensors, tensors_size, golden_quantized,
|
|
output_dims_count, output_data);
|
|
}
|
|
} // namespace
|
|
} // namespace testing
|
|
} // namespace tflite
|
|
|
|
TF_LITE_MICRO_TESTS_BEGIN
|
|
|
|
TF_LITE_MICRO_TEST(FloatPreluActivationsOpTest) {
|
|
const int input_shape[] = {3, 2, 2, 3};
|
|
const float input_values[] = {
|
|
0.0f, 0.0f, 0.0f, // Row 1, Column 1
|
|
1.0f, 1.0f, 1.0f, // Row 1, Column 2
|
|
-1.0f, -1.0f, -1.0f, // Row 2, Column 1
|
|
-2.0f, -2.0f, -2.0f, // Row 1, Column 2
|
|
};
|
|
const int alpha_shape[] = {3, 1, 1, 3};
|
|
const float alpha_values[] = {0.0f, 1.0f, 2.0f};
|
|
const int output_shape[] = {3, 2, 2, 3};
|
|
const float golden[] = {
|
|
0.0f, 0.0f, 0.0f, // Row 1, Column 1
|
|
1.0f, 1.0f, 1.0f, // Row 1, Column 2
|
|
0.0f, -1.0f, -2.0f, // Row 2, Column 1
|
|
0.0f, -2.0f, -4.0f, // Row 1, Column 2
|
|
};
|
|
const int output_dims_count = 12;
|
|
float output_data[output_dims_count];
|
|
tflite::testing::TestPreluFloat(input_shape, input_values, alpha_shape,
|
|
alpha_values, golden, output_shape,
|
|
output_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(QuantizedUint8PreluActivationsOpTest) {
|
|
const int input_shape[] = {3, 2, 2, 3};
|
|
const float input_values[] = {
|
|
0.0f, 0.0f, 0.0f, // Row 1, Column 1
|
|
0.5f, 0.5f, 0.5f, // Row 1, Column 2
|
|
-1.0f, -1.0f, -1.0f, // Row 2, Column 1
|
|
-0.25f, -0.25f, -0.25f, // Row 1, Column 2
|
|
};
|
|
const int alpha_shape[] = {3, 1, 1, 3};
|
|
const float alpha_values[] = {0.0f, 0.5f, -0.5f};
|
|
const int output_shape[] = {3, 2, 2, 3};
|
|
const float golden[] = {
|
|
0.0f, 0.0f, 0.0f, // Row 1, Column 1
|
|
0.5f, 0.5f, 0.5f, // Row 1, Column 2
|
|
0.0f, -0.5f, 0.5f, // Row 2, Column 1
|
|
0.0f, -0.125f, 0.125f, // Row 1, Column 2
|
|
};
|
|
|
|
const int dims_count = 12;
|
|
|
|
uint8_t input_quantized[dims_count];
|
|
uint8_t alpha_quantized[3];
|
|
uint8_t golden_quantized[dims_count];
|
|
float scale = 0.125;
|
|
int zero_point = 127;
|
|
uint8_t output_data[dims_count];
|
|
|
|
tflite::testing::TestPreluQuantized(
|
|
input_shape, input_values, input_quantized, scale, zero_point,
|
|
alpha_shape, alpha_values, alpha_quantized, scale, zero_point, golden,
|
|
golden_quantized, scale, zero_point, output_shape, output_data);
|
|
}
|
|
|
|
TF_LITE_MICRO_TEST(QuantizedInt8PreluActivationsOpTest) {
|
|
const int input_shape[] = {3, 2, 2, 3};
|
|
const float input_values[] = {
|
|
0.0f, 0.0f, 0.0f, // Row 1, Column 1
|
|
0.5f, 0.5f, 0.5f, // Row 1, Column 2
|
|
-1.0f, -1.0f, -1.0f, // Row 2, Column 1
|
|
-0.25f, -0.25f, -0.25f, // Row 1, Column 2
|
|
};
|
|
const int alpha_shape[] = {3, 1, 1, 3};
|
|
const float alpha_values[] = {0.0f, 0.5f, -0.5f};
|
|
const int output_shape[] = {3, 2, 2, 3};
|
|
const float golden[] = {
|
|
0.0f, 0.0f, 0.0f, // Row 1, Column 1
|
|
0.5f, 0.5f, 0.5f, // Row 1, Column 2
|
|
0.0f, -0.5f, 0.5f, // Row 2, Column 1
|
|
0.0f, -0.125f, 0.125f, // Row 1, Column 2
|
|
};
|
|
const int dims_count = 12;
|
|
int8_t input_quantized[dims_count];
|
|
int8_t alpha_quantized[3];
|
|
int8_t golden_quantized[dims_count];
|
|
float scale = 2.0 / 255.0;
|
|
int zero_point = 0;
|
|
int8_t output_data[dims_count];
|
|
tflite::testing::TestPreluQuantized(
|
|
input_shape, input_values, input_quantized, scale, zero_point,
|
|
alpha_shape, alpha_values, alpha_quantized, scale, zero_point, golden,
|
|
golden_quantized, scale, zero_point, output_shape, output_data);
|
|
}
|
|
TF_LITE_MICRO_TESTS_END
|