As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages. We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`). PiperOrigin-RevId: 332520146 Change-Id: I405d986cfc653aaafcfdf4162c0acbd46220b921
270 lines
10 KiB
C++
270 lines
10 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/kernels/internal/reference/pooling.h"
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/padding.h"
|
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace micro {
|
|
namespace pooling {
|
|
|
|
namespace {
|
|
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
struct OpData {
|
|
TfLitePaddingValues padding;
|
|
int32_t activation_min;
|
|
int32_t activation_max;
|
|
float activation_min_f32;
|
|
float activation_max_f32;
|
|
};
|
|
|
|
TfLiteStatus CalculateOpData(const TfLiteContext* context,
|
|
const TfLitePoolParams* params,
|
|
const TfLiteTensor* input,
|
|
const TfLiteTensor* output, OpData* data) {
|
|
// input: batch, height, width, channel
|
|
int height = SizeOfDimension(input, 1);
|
|
int width = SizeOfDimension(input, 2);
|
|
|
|
int out_height, out_width;
|
|
|
|
data->padding = ComputePaddingHeightWidth(
|
|
params->stride_height, params->stride_width,
|
|
/*dilation_rate_height=*/1,
|
|
/*dilation_rate_width=*/1, height, width, params->filter_height,
|
|
params->filter_width, params->padding, &out_height, &out_width);
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
void AverageEvalFloat(const TfLiteContext* context, const TfLiteNode* node,
|
|
const TfLitePoolParams* params, const OpData* data,
|
|
const TfLiteEvalTensor* input, TfLiteEvalTensor* output) {
|
|
PoolParams op_params;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.filter_height = params->filter_height;
|
|
op_params.filter_width = params->filter_width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.float_activation_min = data->activation_min_f32;
|
|
op_params.float_activation_max = data->activation_max_f32;
|
|
reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<float>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<float>(output));
|
|
}
|
|
|
|
void AverageEvalQuantized(TfLiteContext* context, const TfLiteNode* node,
|
|
const TfLitePoolParams* params, const OpData* data,
|
|
const TfLiteEvalTensor* input,
|
|
TfLiteEvalTensor* output) {
|
|
TFLITE_DCHECK(input->type == kTfLiteUInt8 || input->type == kTfLiteInt8);
|
|
|
|
PoolParams op_params;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.filter_height = params->filter_height;
|
|
op_params.filter_width = params->filter_width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.quantized_activation_min = data->activation_min;
|
|
op_params.quantized_activation_max = data->activation_max;
|
|
|
|
if (input->type == kTfLiteUInt8) {
|
|
reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<uint8_t>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<uint8_t>(output));
|
|
} else {
|
|
reference_integer_ops::AveragePool(
|
|
op_params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<int8_t>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int8_t>(output));
|
|
}
|
|
}
|
|
|
|
void MaxEvalFloat(TfLiteContext* context, TfLiteNode* node,
|
|
TfLitePoolParams* params, const OpData* data,
|
|
const TfLiteEvalTensor* input, TfLiteEvalTensor* output) {
|
|
tflite::PoolParams op_params;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.filter_height = params->filter_height;
|
|
op_params.filter_width = params->filter_width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.float_activation_min = data->activation_min_f32;
|
|
op_params.float_activation_max = data->activation_max_f32;
|
|
reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<float>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<float>(output));
|
|
}
|
|
|
|
void MaxEvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
|
TfLitePoolParams* params, const OpData* data,
|
|
const TfLiteEvalTensor* input, TfLiteEvalTensor* output) {
|
|
tflite::PoolParams op_params;
|
|
op_params.stride_height = params->stride_height;
|
|
op_params.stride_width = params->stride_width;
|
|
op_params.filter_height = params->filter_height;
|
|
op_params.filter_width = params->filter_width;
|
|
op_params.padding_values.height = data->padding.height;
|
|
op_params.padding_values.width = data->padding.width;
|
|
op_params.quantized_activation_min = data->activation_min;
|
|
op_params.quantized_activation_max = data->activation_max;
|
|
|
|
if (input->type == kTfLiteUInt8) {
|
|
reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<uint8_t>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<uint8_t>(output));
|
|
} else {
|
|
reference_integer_ops::MaxPool(
|
|
op_params, tflite::micro::GetTensorShape(input),
|
|
tflite::micro::GetTensorData<int8_t>(input),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int8_t>(output));
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->builtin_data != nullptr);
|
|
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
|
|
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
const OpData* data = static_cast<const OpData*>(node->user_data);
|
|
|
|
const TfLiteEvalTensor* input =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
|
TfLiteEvalTensor* output =
|
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
|
|
|
// Inputs and outputs share the same type, guaranteed by the converter.
|
|
switch (input->type) {
|
|
case kTfLiteFloat32:
|
|
AverageEvalFloat(context, node, params, data, input, output);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
case kTfLiteInt8:
|
|
AverageEvalQuantized(context, node, params, data, input, output);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Input type %s is not currently supported",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->builtin_data != nullptr);
|
|
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
|
|
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
const OpData* data = static_cast<const OpData*>(node->user_data);
|
|
|
|
const TfLiteEvalTensor* input =
|
|
tflite::micro::GetEvalInput(context, node, kInputTensor);
|
|
TfLiteEvalTensor* output =
|
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
|
|
|
switch (input->type) {
|
|
case kTfLiteFloat32:
|
|
MaxEvalFloat(context, node, params, data, input, output);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
case kTfLiteInt8:
|
|
MaxEvalQuantized(context, node, params, data, input, output);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
|
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->builtin_data != nullptr);
|
|
auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
|
|
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
OpData* data = static_cast<OpData*>(node->user_data);
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
TF_LITE_ENSURE(context, input != nullptr);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
TF_LITE_ENSURE(context, output != nullptr);
|
|
|
|
TF_LITE_ENSURE_STATUS(CalculateOpData(context, params, input, output, data));
|
|
|
|
if (input->type == kTfLiteFloat32) {
|
|
CalculateActivationRange(params->activation, &data->activation_min_f32,
|
|
&data->activation_max_f32);
|
|
} else if (input->type == kTfLiteInt8 || input->type == kTfLiteUInt8) {
|
|
CalculateActivationRangeQuantized(context, params->activation, output,
|
|
&data->activation_min,
|
|
&data->activation_max);
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace pooling
|
|
|
|
TfLiteRegistration Register_AVERAGE_POOL_2D() {
|
|
return {/*init=*/pooling::Init,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/pooling::Prepare,
|
|
/*invoke=*/pooling::AverageEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
TfLiteRegistration Register_MAX_POOL_2D() {
|
|
return {/*init=*/pooling::Init,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/pooling::Prepare,
|
|
/*invoke=*/pooling::MaxEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
} // namespace micro
|
|
} // namespace ops
|
|
} // namespace tflite
|