As part of ongoing refactoring, `tflite::GetInput`, `tflite::GetOutput`, `tflite::GetTemporary` and `tflite::GetIntermediates` will return `nullptr` in some cases. Hence, we insert the `nullptr` checks on all usages. We also insert `nullptr` checks on usages of `tflite::GetVariableInput` and `tflite::GetOptionalInputTensor` but only in the cases where there is no obvious check that `nullptr` is acceptable (that is, we only insert the check for the output of these two functions if the tensor is accessed as if it is always not `nullptr`). PiperOrigin-RevId: 332520146 Change-Id: I405d986cfc653aaafcfdf4162c0acbd46220b921
237 lines
9.3 KiB
C++
237 lines
9.3 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/kernels/internal/reference/mul.h"
|
|
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/integer_ops/mul.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/micro/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/micro/memory_helpers.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace micro {
|
|
namespace mul {
|
|
namespace {
|
|
|
|
constexpr int kInput1Tensor = 0;
|
|
constexpr int kInput2Tensor = 1;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
struct OpData {
|
|
int32_t input1_zero_point;
|
|
int32_t input2_zero_point;
|
|
|
|
int32_t output_activation_min;
|
|
int32_t output_activation_max;
|
|
int32_t output_zero_point;
|
|
int32_t output_multiplier;
|
|
int output_shift;
|
|
|
|
float output_activation_min_f32;
|
|
float output_activation_max_f32;
|
|
};
|
|
|
|
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
|
TfLiteMulParams* params, OpData* data) {
|
|
const TfLiteTensor* input1 = GetInput(context, node, kInput1Tensor);
|
|
TF_LITE_ENSURE(context, input1 != nullptr);
|
|
const TfLiteTensor* input2 = GetInput(context, node, kInput2Tensor);
|
|
TF_LITE_ENSURE(context, input2 != nullptr);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
TF_LITE_ENSURE(context, output != nullptr);
|
|
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
|
|
|
|
if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) {
|
|
TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
|
|
context, params->activation, output, &data->output_activation_min,
|
|
&data->output_activation_max));
|
|
|
|
double real_multiplier = static_cast<double>(input1->params.scale) *
|
|
static_cast<double>(input2->params.scale) /
|
|
static_cast<double>(output->params.scale);
|
|
QuantizeMultiplier(real_multiplier, &data->output_multiplier,
|
|
&data->output_shift);
|
|
|
|
data->input1_zero_point = input1->params.zero_point;
|
|
data->input2_zero_point = input2->params.zero_point;
|
|
data->output_zero_point = output->params.zero_point;
|
|
} else {
|
|
CalculateActivationRange(params->activation,
|
|
&data->output_activation_min_f32,
|
|
&data->output_activation_max_f32);
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void EvalQuantized(TfLiteContext* context, TfLiteNode* node, const OpData* data,
|
|
const TfLiteEvalTensor* input1,
|
|
const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
|
|
tflite::ArithmeticParams op_params = {};
|
|
op_params.quantized_activation_min = data->output_activation_min;
|
|
op_params.quantized_activation_max = data->output_activation_max;
|
|
op_params.float_activation_max = data->output_activation_max_f32;
|
|
op_params.input1_offset = -data->input1_zero_point;
|
|
op_params.input2_offset = -data->input2_zero_point;
|
|
op_params.output_offset = data->output_zero_point;
|
|
op_params.output_multiplier = data->output_multiplier;
|
|
op_params.output_shift = data->output_shift;
|
|
|
|
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
|
|
tflite::micro::GetTensorShape(input1),
|
|
tflite::micro::GetTensorShape(input2), &op_params);
|
|
|
|
if (output->type == kTfLiteInt8) {
|
|
if (need_broadcast) {
|
|
reference_integer_ops::BroadcastMul4DSlow(
|
|
op_params, tflite::micro::GetTensorShape(input1),
|
|
tflite::micro::GetTensorData<int8_t>(input1),
|
|
tflite::micro::GetTensorShape(input2),
|
|
tflite::micro::GetTensorData<int8_t>(input2),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int8_t>(output));
|
|
} else {
|
|
reference_integer_ops::Mul(op_params,
|
|
tflite::micro::GetTensorShape(input1),
|
|
tflite::micro::GetTensorData<int8_t>(input1),
|
|
tflite::micro::GetTensorShape(input2),
|
|
tflite::micro::GetTensorData<int8_t>(input2),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<int8_t>(output));
|
|
}
|
|
} else if (output->type == kTfLiteUInt8) {
|
|
if (need_broadcast) {
|
|
reference_integer_ops::BroadcastMul4DSlow(
|
|
op_params, tflite::micro::GetTensorShape(input1),
|
|
tflite::micro::GetTensorData<uint8_t>(input1),
|
|
tflite::micro::GetTensorShape(input2),
|
|
tflite::micro::GetTensorData<uint8_t>(input2),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<uint8_t>(output));
|
|
} else {
|
|
reference_integer_ops::Mul(op_params,
|
|
tflite::micro::GetTensorShape(input1),
|
|
tflite::micro::GetTensorData<uint8_t>(input1),
|
|
tflite::micro::GetTensorShape(input2),
|
|
tflite::micro::GetTensorData<uint8_t>(input2),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<uint8_t>(output));
|
|
}
|
|
}
|
|
}
|
|
|
|
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
|
|
TfLiteMulParams* params, const OpData* data,
|
|
const TfLiteEvalTensor* input1, const TfLiteEvalTensor* input2,
|
|
TfLiteEvalTensor* output) {
|
|
tflite::ArithmeticParams op_params = {};
|
|
op_params.float_activation_min = data->output_activation_min_f32;
|
|
op_params.float_activation_max = data->output_activation_max_f32;
|
|
|
|
bool need_broadcast = reference_ops::ProcessBroadcastShapes(
|
|
tflite::micro::GetTensorShape(input1),
|
|
tflite::micro::GetTensorShape(input2), &op_params);
|
|
|
|
if (need_broadcast) {
|
|
reference_ops::BroadcastMul4DSlow(
|
|
op_params, tflite::micro::GetTensorShape(input1),
|
|
tflite::micro::GetTensorData<float>(input1),
|
|
tflite::micro::GetTensorShape(input2),
|
|
tflite::micro::GetTensorData<float>(input2),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<float>(output));
|
|
} else {
|
|
reference_ops::Mul(op_params, tflite::micro::GetTensorShape(input1),
|
|
tflite::micro::GetTensorData<float>(input1),
|
|
tflite::micro::GetTensorShape(input2),
|
|
tflite::micro::GetTensorData<float>(input2),
|
|
tflite::micro::GetTensorShape(output),
|
|
tflite::micro::GetTensorData<float>(output));
|
|
}
|
|
}
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
|
return context->AllocatePersistentBuffer(context, sizeof(OpData));
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->builtin_data != nullptr);
|
|
auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
|
|
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
OpData* data = static_cast<OpData*>(node->user_data);
|
|
|
|
return CalculateOpData(context, node, params, data);
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->builtin_data != nullptr);
|
|
auto* params = reinterpret_cast<TfLiteMulParams*>(node->builtin_data);
|
|
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
const OpData* data = static_cast<const OpData*>(node->user_data);
|
|
|
|
const TfLiteEvalTensor* input1 =
|
|
tflite::micro::GetEvalInput(context, node, kInput1Tensor);
|
|
const TfLiteEvalTensor* input2 =
|
|
tflite::micro::GetEvalInput(context, node, kInput2Tensor);
|
|
TfLiteEvalTensor* output =
|
|
tflite::micro::GetEvalOutput(context, node, kOutputTensor);
|
|
|
|
switch (input1->type) {
|
|
case kTfLiteUInt8:
|
|
case kTfLiteInt8:
|
|
EvalQuantized(context, node, data, input1, input2, output);
|
|
break;
|
|
case kTfLiteFloat32:
|
|
EvalFloat(context, node, params, data, input1, input2, output);
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.",
|
|
TfLiteTypeGetName(input1->type), input1->type);
|
|
return kTfLiteError;
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
} // namespace mul
|
|
|
|
TfLiteRegistration Register_MUL() {
|
|
return {/*init=*/mul::Init,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/mul::Prepare,
|
|
/*invoke=*/mul::Eval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
}
|
|
|
|
} // namespace micro
|
|
} // namespace ops
|
|
} // namespace tflite
|