1005 lines
34 KiB
C++
1005 lines
34 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
|
|
#define EIGEN_USE_GPU
|
|
#endif
|
|
|
|
#include "tensorflow/c/kernels.h"
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#include "absl/container/inlined_vector.h"
|
|
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
|
#include "tensorflow/c/c_api.h"
|
|
#include "tensorflow/c/tf_datatype.h"
|
|
#include "tensorflow/c/tf_status.h"
|
|
#include "tensorflow/c/tf_tensor.h"
|
|
#include "tensorflow/core/common_runtime/device.h"
|
|
#include "tensorflow/core/common_runtime/device_factory.h"
|
|
#include "tensorflow/core/framework/allocator.h"
|
|
#include "tensorflow/core/framework/attr_value.pb.h"
|
|
#include "tensorflow/core/framework/device_base.h"
|
|
#include "tensorflow/core/framework/kernel_def.pb.h"
|
|
#include "tensorflow/core/framework/node_def.pb.h"
|
|
#include "tensorflow/core/framework/node_def_builder.h"
|
|
#include "tensorflow/core/framework/op.h"
|
|
#include "tensorflow/core/framework/op_kernel.h"
|
|
#include "tensorflow/core/framework/tensor.h"
|
|
#include "tensorflow/core/framework/tensor_types.h"
|
|
#include "tensorflow/core/framework/types.h"
|
|
#include "tensorflow/core/framework/types.pb.h"
|
|
#include "tensorflow/core/kernels/ops_testutil.h"
|
|
#include "tensorflow/core/lib/core/status_test_util.h"
|
|
#include "tensorflow/core/platform/env.h"
|
|
#include "tensorflow/core/platform/status.h"
|
|
#include "tensorflow/core/platform/test.h"
|
|
#include "tensorflow/core/platform/types.h"
|
|
|
|
struct MyCustomKernel {
|
|
bool created;
|
|
bool compute_called;
|
|
};
|
|
|
|
static bool delete_called = false;
|
|
|
|
static void* MyCreateFunc(TF_OpKernelConstruction* ctx) {
|
|
struct MyCustomKernel* s = new struct MyCustomKernel;
|
|
s->created = true;
|
|
s->compute_called = false;
|
|
|
|
// Exercise attribute reads.
|
|
TF_DataType type;
|
|
TF_Status* status = TF_NewStatus();
|
|
TF_OpKernelConstruction_GetAttrType(ctx, "SomeDataTypeAttr", &type, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status));
|
|
EXPECT_EQ(TF_FLOAT, type);
|
|
TF_DeleteStatus(status);
|
|
|
|
// Exercise kernel NodeDef name read
|
|
TF_StringView name_string_view = TF_OpKernelConstruction_GetName(ctx);
|
|
std::string node_name = "SomeNodeName";
|
|
std::string candidate_node_name =
|
|
std::string(name_string_view.data, name_string_view.len);
|
|
EXPECT_EQ(node_name, candidate_node_name);
|
|
return s;
|
|
}
|
|
|
|
static void MyComputeFunc(void* kernel, TF_OpKernelContext* ctx) {
|
|
struct MyCustomKernel* s = static_cast<struct MyCustomKernel*>(kernel);
|
|
s->compute_called = true;
|
|
if (ctx != nullptr) {
|
|
EXPECT_EQ(43, TF_StepId(ctx));
|
|
}
|
|
}
|
|
|
|
static void MyDeleteFunc(void* kernel) {
|
|
struct MyCustomKernel* s = static_cast<struct MyCustomKernel*>(kernel);
|
|
EXPECT_TRUE(s->created);
|
|
EXPECT_TRUE(s->compute_called);
|
|
delete_called = true;
|
|
delete s;
|
|
}
|
|
|
|
namespace tensorflow {
|
|
|
|
static std::unique_ptr<OpKernel> GetFakeKernel(const char* device_name,
|
|
const char* op_name,
|
|
const char* node_name,
|
|
Status* status) {
|
|
NodeDef def;
|
|
def.set_op(op_name);
|
|
def.set_name(node_name);
|
|
def.set_device(device_name);
|
|
def.add_input("input1");
|
|
def.add_input("input2");
|
|
|
|
AttrValue v;
|
|
v.set_type(DataType::DT_FLOAT);
|
|
(*def.mutable_attr())["SomeDataTypeAttr"] = v;
|
|
|
|
return CreateOpKernel(DeviceType(device_name), nullptr, nullptr, def, 1,
|
|
status);
|
|
}
|
|
|
|
// Tests registration of a single C kernel and checks that calls through the
|
|
// C/C++ boundary are being made.
|
|
TEST(TestKernel, TestRegisterKernelBuilder) {
|
|
const char* node_name = "SomeNodeName";
|
|
const char* op_name = "FooOp";
|
|
const char* device_name = "FakeDeviceName1";
|
|
|
|
REGISTER_OP(op_name)
|
|
.Input("input1: double")
|
|
.Input("input2: uint8")
|
|
.Output("output1: uint8")
|
|
.Attr("SomeDataTypeAttr: type");
|
|
|
|
TF_KernelBuilder* builder = TF_NewKernelBuilder(
|
|
op_name, device_name, &MyCreateFunc, &MyComputeFunc, &MyDeleteFunc);
|
|
|
|
{
|
|
TF_Status* status = TF_NewStatus();
|
|
TF_RegisterKernelBuilder(node_name, builder, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status));
|
|
TF_Buffer* buf = TF_GetRegisteredKernelsForOp(op_name, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status));
|
|
KernelList list;
|
|
list.ParseFromArray(buf->data, buf->length);
|
|
ASSERT_EQ(1, list.kernel_size());
|
|
ASSERT_EQ(device_name, list.kernel(0).device_type());
|
|
TF_DeleteBuffer(buf);
|
|
TF_DeleteStatus(status);
|
|
}
|
|
|
|
{
|
|
Status status;
|
|
std::unique_ptr<OpKernel> kernel =
|
|
GetFakeKernel(device_name, op_name, node_name, &status);
|
|
TF_EXPECT_OK(status);
|
|
ASSERT_NE(nullptr, kernel.get());
|
|
kernel->Compute(nullptr);
|
|
}
|
|
|
|
ASSERT_TRUE(delete_called);
|
|
}
|
|
|
|
// REGISTER_OP for TF_OpKernelConstruction_GetAttr* test cases.
|
|
// Registers two ops, each with a single attribute called 'Attr'.
|
|
// The attribute in one op will have a type 'type', the other
|
|
// will have list(type).
|
|
#define ATTR_TEST_REGISTER_OP(name, type) \
|
|
REGISTER_OP("TestKernelAttr" #name) \
|
|
.Attr("Attr: " #type) \
|
|
.SetShapeFn(tensorflow::shape_inference::UnknownShape); \
|
|
REGISTER_OP("TestKernelAttr" #name "List") \
|
|
.Attr("Attr: list(" #type ")") \
|
|
.SetShapeFn(tensorflow::shape_inference::UnknownShape)
|
|
ATTR_TEST_REGISTER_OP(String, string);
|
|
ATTR_TEST_REGISTER_OP(Int, int);
|
|
ATTR_TEST_REGISTER_OP(Float, float);
|
|
ATTR_TEST_REGISTER_OP(Bool, bool);
|
|
ATTR_TEST_REGISTER_OP(Type, type);
|
|
#undef ATTR_TEST_REGISTER_OP
|
|
|
|
// Helper macros for the TF_OpKernelConstruction_GetAttr* tests.
|
|
#define EXPECT_TF_SIZE(attr_name, expected_list_size, expected_total_size) \
|
|
do { \
|
|
int32_t list_size, total_size; \
|
|
TF_OpKernelConstruction_GetAttrSize(ctx, attr_name, &list_size, \
|
|
&total_size, status); \
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status); \
|
|
EXPECT_EQ(expected_list_size, list_size); \
|
|
EXPECT_EQ(expected_total_size, total_size); \
|
|
} while (0)
|
|
|
|
typedef void* (*MyCreateFuncWithAttr)(TF_OpKernelConstruction*);
|
|
class TestKernelAttr : public ::testing::Test {
|
|
public:
|
|
TestKernelAttr() {}
|
|
~TestKernelAttr() override {}
|
|
|
|
std::unique_ptr<OpKernel> GetFakeKernelWithAttr(const char* op_name,
|
|
AttrValue v, Status* status) {
|
|
NodeDef def;
|
|
def.set_op(op_name);
|
|
def.set_name("FakeNode");
|
|
def.set_device("FakeDevice");
|
|
(*def.mutable_attr())["Attr"] = v;
|
|
return CreateOpKernel(DeviceType("FakeDevice"), nullptr, nullptr, def, 1,
|
|
status);
|
|
}
|
|
|
|
void CreateAndCallKernelWithAttr(MyCreateFuncWithAttr MyCreateFuncAttr,
|
|
const char* op_name, AttrValue& v) {
|
|
TF_KernelBuilder* builder = TF_NewKernelBuilder(
|
|
op_name, "FakeDevice", MyCreateFuncAttr, &MyComputeFunc, &MyDeleteFunc);
|
|
{
|
|
TF_Status* status = TF_NewStatus();
|
|
TF_RegisterKernelBuilder("FakeNode", builder, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status));
|
|
TF_DeleteStatus(status);
|
|
}
|
|
Status status;
|
|
std::unique_ptr<OpKernel> kernel =
|
|
GetFakeKernelWithAttr(op_name, v, &status);
|
|
TF_EXPECT_OK(status);
|
|
ASSERT_NE(nullptr, kernel.get());
|
|
kernel->Compute(nullptr);
|
|
|
|
ASSERT_TRUE(delete_called);
|
|
}
|
|
};
|
|
|
|
TEST_F(TestKernelAttr, String) {
|
|
auto my_create_func = [](TF_OpKernelConstruction* ctx) {
|
|
struct MyCustomKernel* s = new struct MyCustomKernel;
|
|
s->created = true;
|
|
s->compute_called = false;
|
|
|
|
std::unique_ptr<char[]> val(new char[5]);
|
|
TF_Status* status = TF_NewStatus();
|
|
EXPECT_TF_SIZE(/*attr_name*/ "Attr", /*expected_list_size*/ -1,
|
|
/*expected_total_size*/ 5);
|
|
TF_OpKernelConstruction_GetAttrString(ctx, "Attr", val.get(),
|
|
/*max_length*/ 5, status);
|
|
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
|
|
EXPECT_EQ("bunny", string(static_cast<const char*>(val.get()), 5));
|
|
TF_DeleteStatus(status);
|
|
return static_cast<void*>(s);
|
|
};
|
|
|
|
AttrValue v;
|
|
v.set_s("bunny");
|
|
CreateAndCallKernelWithAttr(my_create_func, "TestKernelAttrString", v);
|
|
}
|
|
|
|
TEST_F(TestKernelAttr, StringList) {
|
|
auto my_create_func = [](TF_OpKernelConstruction* ctx) {
|
|
struct MyCustomKernel* s = new struct MyCustomKernel;
|
|
s->created = true;
|
|
s->compute_called = false;
|
|
|
|
std::vector<string> list = {"bugs", "bunny", "duck"};
|
|
int list_total_size = 0;
|
|
for (const auto& s : list) {
|
|
list_total_size += s.size();
|
|
}
|
|
|
|
TF_Status* status = TF_NewStatus();
|
|
std::unique_ptr<char*[]> values(new char*[list.size()]);
|
|
std::unique_ptr<size_t[]> lens(new size_t[list.size()]);
|
|
std::unique_ptr<char[]> storage(new char[list_total_size]);
|
|
EXPECT_TF_SIZE(/*attr_name*/ "Attr", /*expected_list_size*/ list.size(),
|
|
/*expected_total_size*/ list_total_size);
|
|
TF_OpKernelConstruction_GetAttrStringList(
|
|
ctx, "Attr", values.get(), lens.get(), list.size(), storage.get(),
|
|
list_total_size, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
|
|
|
|
for (size_t i = 0; i < list.size(); ++i) {
|
|
EXPECT_EQ(list[i].size(), lens[i]) << i;
|
|
EXPECT_EQ(list[i], string(static_cast<const char*>(values[i]), lens[i]))
|
|
<< i;
|
|
}
|
|
TF_DeleteStatus(status);
|
|
return static_cast<void*>(s);
|
|
};
|
|
|
|
AttrValue v;
|
|
std::string attr_in[] = {"bugs", "bunny", "duck"};
|
|
SetAttrValue(gtl::ArraySlice<std::string>(attr_in, 3), &v);
|
|
CreateAndCallKernelWithAttr(my_create_func, "TestKernelAttrStringList", v);
|
|
}
|
|
|
|
TEST_F(TestKernelAttr, Int) {
|
|
auto my_create_func = [](TF_OpKernelConstruction* ctx) {
|
|
struct MyCustomKernel* s = new struct MyCustomKernel;
|
|
s->created = true;
|
|
s->compute_called = false;
|
|
|
|
int64_t val;
|
|
TF_Status* status = TF_NewStatus();
|
|
EXPECT_TF_SIZE(/*attr_name*/ "Attr", /*expected_list_size*/ -1,
|
|
/*expected_total_size*/ -1);
|
|
TF_OpKernelConstruction_GetAttrInt64(ctx, "Attr", &val, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
|
|
EXPECT_EQ(1234, val);
|
|
TF_DeleteStatus(status);
|
|
return static_cast<void*>(s);
|
|
};
|
|
|
|
AttrValue v;
|
|
v.set_i(1234);
|
|
CreateAndCallKernelWithAttr(my_create_func, "TestKernelAttrInt", v);
|
|
}
|
|
|
|
TEST_F(TestKernelAttr, IntList) {
|
|
auto my_create_func = [](TF_OpKernelConstruction* ctx) {
|
|
struct MyCustomKernel* s = new struct MyCustomKernel;
|
|
s->created = true;
|
|
s->compute_called = false;
|
|
|
|
const int64_t list[] = {1, 2, 3, 4};
|
|
const size_t list_size = TF_ARRAYSIZE(list);
|
|
int64_t values[list_size];
|
|
|
|
TF_Status* status = TF_NewStatus();
|
|
EXPECT_TF_SIZE(/*attr_name*/ "Attr", /*expected_list_size*/ list_size,
|
|
/*expected_total_size*/ -1);
|
|
TF_OpKernelConstruction_GetAttrInt64List(ctx, "Attr", values, list_size,
|
|
status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
|
|
EXPECT_TRUE(
|
|
std::equal(std::begin(list), std::end(list), std::begin(values)));
|
|
TF_DeleteStatus(status);
|
|
return static_cast<void*>(s);
|
|
};
|
|
|
|
AttrValue v;
|
|
int64 attr_in[] = {1, 2, 3, 4};
|
|
SetAttrValue(gtl::ArraySlice<int64>(attr_in, 4), &v);
|
|
CreateAndCallKernelWithAttr(my_create_func, "TestKernelAttrIntList", v);
|
|
}
|
|
|
|
TEST_F(TestKernelAttr, Float) {
|
|
auto my_create_func = [](TF_OpKernelConstruction* ctx) {
|
|
struct MyCustomKernel* s = new struct MyCustomKernel;
|
|
s->created = true;
|
|
s->compute_called = false;
|
|
|
|
float val;
|
|
TF_Status* status = TF_NewStatus();
|
|
EXPECT_TF_SIZE(/*attr_name*/ "Attr", /*expected_list_size*/ -1,
|
|
/*expected_total_size*/ -1);
|
|
TF_OpKernelConstruction_GetAttrFloat(ctx, "Attr", &val, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
|
|
EXPECT_FLOAT_EQ(2.718, val);
|
|
TF_DeleteStatus(status);
|
|
return static_cast<void*>(s);
|
|
};
|
|
|
|
AttrValue v;
|
|
v.set_f(2.718);
|
|
CreateAndCallKernelWithAttr(my_create_func, "TestKernelAttrFloat", v);
|
|
}
|
|
|
|
TEST_F(TestKernelAttr, FloatList) {
|
|
auto my_create_func = [](TF_OpKernelConstruction* ctx) {
|
|
struct MyCustomKernel* s = new struct MyCustomKernel;
|
|
s->created = true;
|
|
s->compute_called = false;
|
|
|
|
const float list[] = {1.414, 2.718, 3.1415};
|
|
const size_t list_size = TF_ARRAYSIZE(list);
|
|
float values[list_size];
|
|
|
|
TF_Status* status = TF_NewStatus();
|
|
EXPECT_TF_SIZE(/*attr_name*/ "Attr", /*expected_list_size*/ list_size,
|
|
/*expected_total_size*/ -1);
|
|
TF_OpKernelConstruction_GetAttrFloatList(ctx, "Attr", values, list_size,
|
|
status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
|
|
EXPECT_TRUE(
|
|
std::equal(std::begin(list), std::end(list), std::begin(values)));
|
|
TF_DeleteStatus(status);
|
|
return static_cast<void*>(s);
|
|
};
|
|
|
|
AttrValue v;
|
|
float attr_in[] = {1.414, 2.718, 3.1415};
|
|
SetAttrValue(gtl::ArraySlice<float>(attr_in, 3), &v);
|
|
CreateAndCallKernelWithAttr(my_create_func, "TestKernelAttrFloatList", v);
|
|
}
|
|
|
|
TEST_F(TestKernelAttr, Bool) {
|
|
auto my_create_func = [](TF_OpKernelConstruction* ctx) {
|
|
struct MyCustomKernel* s = new struct MyCustomKernel;
|
|
s->created = true;
|
|
s->compute_called = false;
|
|
|
|
unsigned char val;
|
|
TF_Status* status = TF_NewStatus();
|
|
EXPECT_TF_SIZE(/*attr_name*/ "Attr", /*expected_list_size*/ -1,
|
|
/*expected_total_size*/ -1);
|
|
TF_OpKernelConstruction_GetAttrBool(ctx, "Attr", &val, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
|
|
EXPECT_EQ(1, val);
|
|
TF_DeleteStatus(status);
|
|
return static_cast<void*>(s);
|
|
};
|
|
|
|
AttrValue v;
|
|
v.set_b(true);
|
|
CreateAndCallKernelWithAttr(my_create_func, "TestKernelAttrBool", v);
|
|
}
|
|
|
|
TEST_F(TestKernelAttr, BoolList) {
|
|
auto my_create_func = [](TF_OpKernelConstruction* ctx) {
|
|
struct MyCustomKernel* s = new struct MyCustomKernel;
|
|
s->created = true;
|
|
s->compute_called = false;
|
|
|
|
const unsigned char list[] = {1, 0, 1, 0};
|
|
const size_t list_size = TF_ARRAYSIZE(list);
|
|
unsigned char values[list_size];
|
|
|
|
TF_Status* status = TF_NewStatus();
|
|
EXPECT_TF_SIZE(/*attr_name*/ "Attr", /*expected_list_size*/ list_size,
|
|
/*expected_total_size*/ -1);
|
|
TF_OpKernelConstruction_GetAttrBoolList(ctx, "Attr", values, list_size,
|
|
status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
|
|
EXPECT_TRUE(
|
|
std::equal(std::begin(list), std::end(list), std::begin(values)));
|
|
TF_DeleteStatus(status);
|
|
return static_cast<void*>(s);
|
|
};
|
|
|
|
AttrValue v;
|
|
bool attr_in[] = {true, false, true, false};
|
|
SetAttrValue(gtl::ArraySlice<bool>(attr_in, 4), &v);
|
|
CreateAndCallKernelWithAttr(my_create_func, "TestKernelAttrBoolList", v);
|
|
}
|
|
|
|
TEST_F(TestKernelAttr, Type) {
|
|
auto my_create_func = [](TF_OpKernelConstruction* ctx) {
|
|
struct MyCustomKernel* s = new struct MyCustomKernel;
|
|
s->created = true;
|
|
s->compute_called = false;
|
|
|
|
TF_DataType val;
|
|
TF_Status* status = TF_NewStatus();
|
|
EXPECT_TF_SIZE(/*attr_name*/ "Attr", /*expected_list_size*/ -1,
|
|
/*expected_total_size*/ -1);
|
|
TF_OpKernelConstruction_GetAttrType(ctx, "Attr", &val, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
|
|
EXPECT_EQ(TF_FLOAT, val);
|
|
TF_DeleteStatus(status);
|
|
return static_cast<void*>(s);
|
|
};
|
|
|
|
AttrValue v;
|
|
v.set_type(DT_FLOAT);
|
|
CreateAndCallKernelWithAttr(my_create_func, "TestKernelAttrType", v);
|
|
}
|
|
|
|
TEST_F(TestKernelAttr, TypeList) {
|
|
auto my_create_func = [](TF_OpKernelConstruction* ctx) {
|
|
struct MyCustomKernel* s = new struct MyCustomKernel;
|
|
s->created = true;
|
|
s->compute_called = false;
|
|
|
|
const TF_DataType list[] = {TF_FLOAT, TF_DOUBLE, TF_HALF, TF_COMPLEX128};
|
|
const size_t list_size = TF_ARRAYSIZE(list);
|
|
TF_DataType values[list_size];
|
|
|
|
TF_Status* status = TF_NewStatus();
|
|
EXPECT_TF_SIZE(/*attr_name*/ "Attr", /*expected_list_size*/ list_size,
|
|
/*expected_total_size*/ -1);
|
|
TF_OpKernelConstruction_GetAttrTypeList(ctx, "Attr", values, list_size,
|
|
status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status)) << TF_Message(status);
|
|
EXPECT_TRUE(
|
|
std::equal(std::begin(list), std::end(list), std::begin(values)));
|
|
TF_DeleteStatus(status);
|
|
return static_cast<void*>(s);
|
|
};
|
|
|
|
AttrValue v;
|
|
DataType attr_in[] = {DT_FLOAT, DT_DOUBLE, DT_HALF, DT_COMPLEX128};
|
|
SetAttrValue(gtl::ArraySlice<DataType>(attr_in, 4), &v);
|
|
CreateAndCallKernelWithAttr(my_create_func, "TestKernelAttrTypeList", v);
|
|
}
|
|
#undef EXPECT_TF_SIZE
|
|
|
|
class DummyDevice : public DeviceBase {
|
|
public:
|
|
explicit DummyDevice(Env* env) : DeviceBase(env) {}
|
|
Allocator* GetAllocator(AllocatorAttributes /*attr*/) override {
|
|
return cpu_allocator();
|
|
}
|
|
};
|
|
|
|
TEST(TestKernel, TestInputAndOutputCount) {
|
|
const char* node_name = "InputOutputCounterKernel";
|
|
const char* op_name = "BarOp";
|
|
const char* device_name = "FakeDeviceName2";
|
|
|
|
REGISTER_OP(op_name)
|
|
.Input("input1: double")
|
|
.Input("input2: uint8")
|
|
.Output("output1: uint8")
|
|
.Attr("SomeDataTypeAttr: type");
|
|
|
|
static int num_inputs = 0;
|
|
static int num_outputs = 0;
|
|
|
|
// A kernel whose Compute function has a side-effect of updating num_inputs
|
|
// and num_outputs. Various functions on TF_OpKernelContext are also
|
|
// exercised.
|
|
auto my_compute_func = [](void* kernel, TF_OpKernelContext* ctx) {
|
|
num_inputs = TF_NumInputs(ctx);
|
|
num_outputs = TF_NumOutputs(ctx);
|
|
|
|
TF_Tensor* input = nullptr;
|
|
TF_Status* s = TF_NewStatus();
|
|
TF_GetInput(ctx, 0, &input, s);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(s)) << "Failed to get input: " << TF_Message(s);
|
|
EXPECT_EQ(123, *static_cast<tensorflow::uint8*>(TF_TensorData(input)));
|
|
TF_GetInput(ctx, -1, &input, s);
|
|
EXPECT_EQ(TF_OUT_OF_RANGE, TF_GetCode(s));
|
|
TF_GetInput(ctx, 3, &input, s);
|
|
EXPECT_EQ(TF_OUT_OF_RANGE, TF_GetCode(s));
|
|
|
|
// Copy the input tensor to output.
|
|
TF_SetOutput(ctx, 0, input, s);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(s));
|
|
|
|
TF_SetOutput(ctx, 24, input, s);
|
|
EXPECT_EQ(TF_OUT_OF_RANGE, TF_GetCode(s));
|
|
|
|
EXPECT_EQ(TF_UINT8, TF_ExpectedOutputDataType(ctx, 0));
|
|
|
|
TF_DeleteStatus(s);
|
|
if (input != nullptr) {
|
|
TF_DeleteTensor(input);
|
|
}
|
|
};
|
|
|
|
TF_KernelBuilder* builder = TF_NewKernelBuilder(op_name, device_name, nullptr,
|
|
my_compute_func, nullptr);
|
|
|
|
{
|
|
TF_Status* status = TF_NewStatus();
|
|
TF_RegisterKernelBuilder(node_name, builder, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status));
|
|
TF_DeleteStatus(status);
|
|
}
|
|
|
|
{
|
|
OpKernelContext::Params p;
|
|
DummyDevice dummy_device(nullptr);
|
|
p.device = &dummy_device;
|
|
p.step_id = 43;
|
|
|
|
Tensor t(tensorflow::uint8(123));
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs;
|
|
// Simulate 2 inputs
|
|
inputs.emplace_back(&t);
|
|
inputs.emplace_back();
|
|
p.inputs = &inputs;
|
|
|
|
Status status;
|
|
std::unique_ptr<OpKernel> kernel =
|
|
GetFakeKernel(device_name, op_name, node_name, &status);
|
|
TF_EXPECT_OK(status);
|
|
ASSERT_NE(nullptr, kernel.get());
|
|
|
|
p.op_kernel = kernel.get();
|
|
OpKernelContext ctx(&p);
|
|
kernel->Compute(&ctx);
|
|
|
|
ASSERT_EQ(2, num_inputs);
|
|
ASSERT_EQ(1, num_outputs);
|
|
ASSERT_EQ(123, ctx.mutable_output(0)->scalar<tensorflow::uint8>()());
|
|
}
|
|
}
|
|
|
|
TEST(TestKernel, DeleteKernelBuilderIsOkOnNull) {
|
|
TF_DeleteKernelBuilder(nullptr);
|
|
}
|
|
|
|
TEST(TestKernel, TestTypeConstraint) {
|
|
const char* node_name = "SomeNodeName";
|
|
const char* op_name = "TypeOp";
|
|
const char* device_name = "FakeDeviceName1";
|
|
|
|
REGISTER_OP(op_name)
|
|
.Input("input1: double")
|
|
.Input("input2: uint8")
|
|
.Output("output1: uint8")
|
|
.Attr("T: type");
|
|
|
|
TF_KernelBuilder* builder = TF_NewKernelBuilder(
|
|
op_name, device_name, &MyCreateFunc, &MyComputeFunc, &MyDeleteFunc);
|
|
TF_Status* status = TF_NewStatus();
|
|
TF_KernelBuilder_TypeConstraint(builder, "T", TF_DataType::TF_INT32, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status));
|
|
TF_RegisterKernelBuilder(node_name, builder, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status));
|
|
|
|
TF_Buffer* buf = TF_GetRegisteredKernelsForOp(op_name, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status));
|
|
KernelList list;
|
|
list.ParseFromArray(buf->data, buf->length);
|
|
const auto expected_str = R"str(kernel {
|
|
op: "TypeOp"
|
|
device_type: "FakeDeviceName1"
|
|
constraint {
|
|
name: "T"
|
|
allowed_values {
|
|
list {
|
|
type: DT_INT32
|
|
}
|
|
}
|
|
}
|
|
}
|
|
)str";
|
|
ASSERT_EQ(expected_str, list.DebugString());
|
|
|
|
TF_DeleteBuffer(buf);
|
|
TF_DeleteStatus(status);
|
|
TF_DeleteKernelBuilder(builder);
|
|
ASSERT_TRUE(delete_called);
|
|
}
|
|
|
|
TEST(TestKernel, TestHostMemory) {
|
|
const char* node_name = "SomeNodeName";
|
|
const char* op_name = "HostMemoryOp";
|
|
const char* device_name = "FakeDeviceName1";
|
|
|
|
REGISTER_OP(op_name)
|
|
.Input("input1: double")
|
|
.Input("input2: uint8")
|
|
.Output("output1: uint8")
|
|
.Attr("T: type");
|
|
|
|
TF_KernelBuilder* builder = TF_NewKernelBuilder(
|
|
op_name, device_name, &MyCreateFunc, &MyComputeFunc, &MyDeleteFunc);
|
|
TF_KernelBuilder_HostMemory(builder, "input2");
|
|
TF_KernelBuilder_HostMemory(builder, "output1");
|
|
TF_Status* status = TF_NewStatus();
|
|
TF_RegisterKernelBuilder(node_name, builder, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status));
|
|
|
|
TF_Buffer* buf = TF_GetRegisteredKernelsForOp(op_name, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status));
|
|
KernelList list;
|
|
list.ParseFromArray(buf->data, buf->length);
|
|
const auto expected_str = R"str(kernel {
|
|
op: "HostMemoryOp"
|
|
device_type: "FakeDeviceName1"
|
|
host_memory_arg: "input2"
|
|
host_memory_arg: "output1"
|
|
}
|
|
)str";
|
|
ASSERT_EQ(expected_str, list.DebugString());
|
|
|
|
TF_DeleteBuffer(buf);
|
|
TF_DeleteStatus(status);
|
|
TF_DeleteKernelBuilder(builder);
|
|
ASSERT_TRUE(delete_called);
|
|
}
|
|
|
|
class DeviceKernelOpTest : public OpsTestBase {
|
|
protected:
|
|
void SetupOp(const char* op_name, const char* node_name,
|
|
void (*compute_func)(void*, TF_OpKernelContext*)) {
|
|
TF_KernelBuilder* builder = TF_NewKernelBuilder(
|
|
op_name, device_name_, nullptr, compute_func, nullptr);
|
|
TF_Status* status = TF_NewStatus();
|
|
TF_RegisterKernelBuilder(node_name, builder, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status));
|
|
TF_DeleteStatus(status);
|
|
|
|
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
|
|
std::unique_ptr<Device> device(
|
|
DeviceFactory::NewDevice(device_name_, {}, "/job:a/replica:0/task:0"));
|
|
OpsTestBase::SetDevice(DEVICE_GPU, std::move(device));
|
|
#endif
|
|
TF_ASSERT_OK(NodeDefBuilder(op_name, op_name).Finalize(node_def()));
|
|
TF_ASSERT_OK(InitOp());
|
|
}
|
|
|
|
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
|
|
const char* device_name_ = tensorflow::DEVICE_GPU;
|
|
#else
|
|
const char* device_name_ = tensorflow::DEVICE_CPU;
|
|
#endif
|
|
};
|
|
|
|
// Validates that the tensor has shape and type corresponding to
|
|
// dims and dtype.
|
|
void validate_tensor(TF_Tensor* tensor, int64_t* dims, int64_t num_dims,
|
|
TF_DataType dtype);
|
|
|
|
// Copies data of length tensor_size_bytes from values to tensor.
|
|
template <typename T>
|
|
void set_tensor_data(TF_Tensor* tensor, T* values, size_t tensor_size_bytes,
|
|
TF_OpKernelContext* ctx);
|
|
|
|
REGISTER_OP("StreamOp").Output("output1: float");
|
|
|
|
TEST_F(DeviceKernelOpTest, TestStream) {
|
|
auto my_compute_func = [](void* kernel, TF_OpKernelContext* ctx) {
|
|
TF_Status* s = TF_NewStatus();
|
|
SP_Stream stream = TF_GetStream(ctx, s);
|
|
// Stream is always null if device is not a pluggable device. More test
|
|
// cases will be added when pluggable device mechanism is supported.
|
|
EXPECT_EQ(stream, nullptr);
|
|
EXPECT_NE(TF_OK, TF_GetCode(s));
|
|
TF_DeleteStatus(s);
|
|
};
|
|
|
|
SetupOp("StreamOp", "StreamOp", my_compute_func);
|
|
TF_ASSERT_OK(RunOpKernel());
|
|
}
|
|
|
|
REGISTER_OP("AllocateOutputOp1").Output("output1: float");
|
|
|
|
TEST_F(DeviceKernelOpTest, TestAllocateOutputSizeOne) {
|
|
auto my_compute_func = [](void* kernel, TF_OpKernelContext* ctx) {
|
|
// Allocate output
|
|
TF_Status* s = TF_NewStatus();
|
|
int64_t dim = 1;
|
|
size_t tensor_size_bytes = TF_DataTypeSize(TF_FLOAT);
|
|
TF_Tensor* output = TF_AllocateOutput(
|
|
/*context=*/ctx, /*index=*/0, /*dtype=*/TF_FLOAT, /*dims=*/&dim,
|
|
/*num_dims=*/1, /*len=*/tensor_size_bytes, s);
|
|
validate_tensor(output, &dim, 1, TF_FLOAT);
|
|
|
|
// Set output to 3
|
|
float values[1] = {3.0f};
|
|
set_tensor_data<float>(output, values, tensor_size_bytes, ctx);
|
|
TF_DeleteStatus(s);
|
|
TF_DeleteTensor(output);
|
|
};
|
|
|
|
SetupOp("AllocateOutputOp1", "AllocateOutput1", my_compute_func);
|
|
|
|
TF_ASSERT_OK(RunOpKernel());
|
|
Tensor* output = GetOutput(0);
|
|
EXPECT_EQ("Tensor<type: float shape: [1] values: 3>",
|
|
output->DebugString(100));
|
|
}
|
|
|
|
REGISTER_OP("AllocateOutputOp0").Output("output1: float");
|
|
|
|
TEST_F(DeviceKernelOpTest, TestAllocateEmptyOutput) {
|
|
auto my_compute_func = [](void* kernel, TF_OpKernelContext* ctx) {
|
|
TF_Status* s = TF_NewStatus();
|
|
// Allocate empty output
|
|
int64_t dim = 0;
|
|
TF_Tensor* output = TF_AllocateOutput(
|
|
/*context=*/ctx, /*index=*/0, /*dtype=*/TF_FLOAT, /*dims=*/&dim,
|
|
/*num_dims=*/1, /*len=*/0, s);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(s));
|
|
validate_tensor(output, &dim, 1, TF_FLOAT);
|
|
TF_DeleteStatus(s);
|
|
TF_DeleteTensor(output);
|
|
};
|
|
|
|
SetupOp("AllocateOutputOp0", "AllocateOutput0", my_compute_func);
|
|
|
|
TF_ASSERT_OK(RunOpKernel());
|
|
Tensor* output = GetOutput(0);
|
|
EXPECT_EQ("Tensor<type: float shape: [0] values: >",
|
|
output->DebugString(100));
|
|
}
|
|
|
|
REGISTER_OP("AllocateOutputOp2x3").Output("output1: float");
|
|
|
|
TEST_F(DeviceKernelOpTest, TestAllocateOutputSize2x3) {
|
|
auto my_compute_func = [](void* kernel, TF_OpKernelContext* ctx) {
|
|
TF_Status* s = TF_NewStatus();
|
|
// Allocate 2x3 output
|
|
int64_t dim[2] = {2, 3};
|
|
size_t tensor_size_bytes = TF_DataTypeSize(TF_FLOAT) * 6;
|
|
TF_Tensor* output = TF_AllocateOutput(
|
|
/*context=*/ctx, /*index=*/0, /*dtype=*/TF_FLOAT, /*dims=*/dim,
|
|
/*num_dims=*/2, /*len=*/tensor_size_bytes, s);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(s));
|
|
validate_tensor(output, dim, 2, TF_FLOAT);
|
|
|
|
// Set output to [1 2 3 4 5 6]
|
|
float values[6] = {1, 2, 3, 4, 5, 6};
|
|
set_tensor_data<float>(output, values, tensor_size_bytes, ctx);
|
|
TF_DeleteStatus(s);
|
|
TF_DeleteTensor(output);
|
|
};
|
|
|
|
SetupOp("AllocateOutputOp2x3", "AllocateOutput2x3", my_compute_func);
|
|
|
|
TF_ASSERT_OK(RunOpKernel());
|
|
Tensor* output = GetOutput(0);
|
|
EXPECT_EQ("Tensor<type: float shape: [2,3] values: [1 2 3][4 5 6]>",
|
|
output->DebugString(100));
|
|
}
|
|
|
|
REGISTER_OP("AllocateTempOp1").Output("output1: float");
|
|
|
|
TEST_F(DeviceKernelOpTest, TestAllocateTempSizeOne) {
|
|
auto my_compute_func = [](void* kernel, TF_OpKernelContext* ctx) {
|
|
// Allocate scalar TF_Tensor
|
|
TF_Status* s = TF_NewStatus();
|
|
int64_t dim = 1;
|
|
TF_AllocatorAttributes alloc_attrs;
|
|
alloc_attrs.struct_size = TF_ALLOCATOR_ATTRIBUTES_STRUCT_SIZE;
|
|
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
|
|
alloc_attrs.on_host = 0;
|
|
#else
|
|
alloc_attrs.on_host = 1;
|
|
#endif
|
|
TF_Tensor* output = TF_AllocateTemp(
|
|
/*context=*/ctx, /*dtype=*/TF_FLOAT, /*dims=*/&dim,
|
|
/*num_dims=*/1, /*allocator_attributes*/ &alloc_attrs, s);
|
|
size_t tensor_size_bytes = TF_DataTypeSize(TF_FLOAT);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(s));
|
|
validate_tensor(output, &dim, 1, TF_FLOAT);
|
|
|
|
// Set TF_Tensor value to 3
|
|
float values[1] = {3.0f};
|
|
set_tensor_data<float>(output, values, tensor_size_bytes, ctx);
|
|
TF_SetOutput(ctx, 0, output, s);
|
|
TF_DeleteStatus(s);
|
|
TF_DeleteTensor(output);
|
|
};
|
|
|
|
SetupOp("AllocateTempOp1", "AllocateTemp1", my_compute_func);
|
|
|
|
TF_ASSERT_OK(RunOpKernel());
|
|
Tensor* output = GetOutput(0);
|
|
EXPECT_EQ("Tensor<type: float shape: [1] values: 3>",
|
|
output->DebugString(100));
|
|
}
|
|
|
|
REGISTER_OP("AllocateTempOp0").Output("output1: float");
|
|
|
|
TEST_F(DeviceKernelOpTest, TestAllocateTempEmpty) {
|
|
auto my_compute_func = [](void* kernel, TF_OpKernelContext* ctx) {
|
|
TF_Status* s = TF_NewStatus();
|
|
// Allocate empty TF_Tensor
|
|
int64_t dim = 0;
|
|
TF_AllocatorAttributes alloc_attrs;
|
|
alloc_attrs.struct_size = TF_ALLOCATOR_ATTRIBUTES_STRUCT_SIZE;
|
|
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
|
|
alloc_attrs.on_host = 0;
|
|
#else
|
|
alloc_attrs.on_host = 1;
|
|
#endif
|
|
TF_Tensor* output = TF_AllocateTemp(
|
|
/*context=*/ctx, /*dtype=*/TF_FLOAT, /*dims=*/&dim,
|
|
/*num_dims=*/1, /*allocator_attributes*/ &alloc_attrs, s);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(s));
|
|
validate_tensor(output, &dim, 1, TF_FLOAT);
|
|
TF_SetOutput(ctx, 0, output, s);
|
|
TF_DeleteStatus(s);
|
|
TF_DeleteTensor(output);
|
|
};
|
|
|
|
SetupOp("AllocateTempOp0", "AllocateTemp0", my_compute_func);
|
|
|
|
TF_ASSERT_OK(RunOpKernel());
|
|
Tensor* output = GetOutput(0);
|
|
EXPECT_EQ("Tensor<type: float shape: [0] values: >",
|
|
output->DebugString(100));
|
|
}
|
|
|
|
REGISTER_OP("AllocateTempOp2x3").Output("output1: float");
|
|
|
|
TEST_F(DeviceKernelOpTest, TestAllocateTempSize2x3) {
|
|
auto my_compute_func = [](void* kernel, TF_OpKernelContext* ctx) {
|
|
TF_Status* s = TF_NewStatus();
|
|
size_t tensor_size_bytes = 6 * TF_DataTypeSize(TF_FLOAT);
|
|
// Allocate 2x3 TF_Tensor
|
|
int64_t dim[2] = {2, 3};
|
|
TF_AllocatorAttributes alloc_attrs;
|
|
alloc_attrs.struct_size = TF_ALLOCATOR_ATTRIBUTES_STRUCT_SIZE;
|
|
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
|
|
alloc_attrs.on_host = 0;
|
|
#else
|
|
alloc_attrs.on_host = 1;
|
|
#endif
|
|
TF_Tensor* output = TF_AllocateTemp(
|
|
/*context=*/ctx, /*dtype=*/TF_FLOAT, /*dims=*/dim,
|
|
/*num_dims=*/2, /*allocator_attributes*/ &alloc_attrs, s);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(s));
|
|
validate_tensor(output, dim, 2, TF_FLOAT);
|
|
|
|
// Set TF_Tensor values to [1 2 3 4 5 6]
|
|
float values[6] = {1, 2, 3, 4, 5, 6};
|
|
set_tensor_data<float>(output, values, tensor_size_bytes, ctx);
|
|
TF_SetOutput(ctx, 0, output, s);
|
|
TF_DeleteStatus(s);
|
|
TF_DeleteTensor(output);
|
|
};
|
|
|
|
SetupOp("AllocateTempOp2x3", "AllocateTempOp2x3", my_compute_func);
|
|
|
|
TF_ASSERT_OK(RunOpKernel());
|
|
Tensor* output = GetOutput(0);
|
|
EXPECT_EQ("Tensor<type: float shape: [2,3] values: [1 2 3][4 5 6]>",
|
|
output->DebugString(100));
|
|
}
|
|
|
|
TEST_F(DeviceKernelOpTest, TestForwardInputOrAllocateOutput) {
|
|
const char* node_name = "TestForwardInputOrAllocateOutputKernel";
|
|
const char* op_name = "BazOp";
|
|
const char* device_name = "FakeDeviceName";
|
|
|
|
REGISTER_OP(op_name)
|
|
.Input("input1: float")
|
|
.Input("input2: float")
|
|
.Output("output1: float")
|
|
.Attr("SomeDataTypeAttr: type");
|
|
|
|
// A kernel whose Compute function that forwards a scalar input to output
|
|
auto my_compute_func = [](void* kernel, TF_OpKernelContext* ctx) {
|
|
TF_Status* s = TF_NewStatus();
|
|
int candidate_input_indices[1] = {0};
|
|
int forwarded_input;
|
|
int64_t output_dims[1] = {};
|
|
TF_Tensor* output = TF_ForwardInputOrAllocateOutput(
|
|
/*context=*/ctx, candidate_input_indices,
|
|
/*num_candidate_input_indices=*/1,
|
|
/*output_index=*/0, output_dims, /*output_num_dims=*/0,
|
|
&forwarded_input, /*status=*/s);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(s));
|
|
EXPECT_EQ(forwarded_input, 0);
|
|
EXPECT_EQ(TF_FLOAT, TF_TensorType(output));
|
|
EXPECT_EQ(0, TF_NumDims(output));
|
|
TF_DeleteStatus(s);
|
|
TF_DeleteTensor(output);
|
|
};
|
|
|
|
TF_KernelBuilder* builder = TF_NewKernelBuilder(op_name, device_name, nullptr,
|
|
my_compute_func, nullptr);
|
|
|
|
{
|
|
TF_Status* status = TF_NewStatus();
|
|
TF_RegisterKernelBuilder(node_name, builder, status);
|
|
EXPECT_EQ(TF_OK, TF_GetCode(status));
|
|
TF_DeleteStatus(status);
|
|
}
|
|
|
|
{
|
|
OpKernelContext::Params p;
|
|
DummyDevice dummy_device(nullptr);
|
|
p.device = &dummy_device;
|
|
AllocatorAttributes alloc_attrs;
|
|
p.output_attr_array = &alloc_attrs;
|
|
|
|
Tensor t(123.0f);
|
|
|
|
gtl::InlinedVector<TensorValue, 4> inputs;
|
|
// GetFakeKernel requires a NodeDef with two inputs
|
|
inputs.emplace_back(&t);
|
|
inputs.emplace_back();
|
|
p.inputs = &inputs;
|
|
|
|
Status status;
|
|
std::unique_ptr<OpKernel> kernel =
|
|
GetFakeKernel(device_name, op_name, node_name, &status);
|
|
TF_EXPECT_OK(status);
|
|
ASSERT_NE(nullptr, kernel.get());
|
|
|
|
p.op_kernel = kernel.get();
|
|
OpKernelContext ctx(&p);
|
|
kernel->Compute(&ctx);
|
|
ASSERT_EQ(123, ctx.mutable_output(0)->scalar<float>()());
|
|
}
|
|
}
|
|
|
|
void validate_tensor(TF_Tensor* tensor, int64_t* dims, int64_t num_dims,
|
|
TF_DataType dtype) {
|
|
EXPECT_EQ(TF_FLOAT, TF_TensorType(tensor));
|
|
EXPECT_EQ(num_dims, TF_NumDims(tensor));
|
|
for (int i = 0; i < num_dims; ++i) {
|
|
EXPECT_EQ(dims[i], TF_Dim(tensor, i));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void set_tensor_data(TF_Tensor* tensor, T* values, size_t tensor_size_bytes,
|
|
TF_OpKernelContext* ctx) {
|
|
T* data = reinterpret_cast<T*>(TF_TensorData(tensor));
|
|
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
|
|
OpKernelContext* cc_ctx = reinterpret_cast<OpKernelContext*>(ctx);
|
|
cc_ctx->eigen_gpu_device().memcpyHostToDevice(data, values,
|
|
tensor_size_bytes);
|
|
#else
|
|
memcpy(data, values, tensor_size_bytes);
|
|
#endif
|
|
}
|
|
} // namespace tensorflow
|