STT-tensorflow/tensorflow/python/tpu/tpu_test.py
Anudhyan Boral 1b920224d0 Allow tf2xla Einsum Op to accept unary inputs.
We change the tf2xla compiler for EinsumOp from accepting two Tensors 'a' and 'b' to accepting a list of Tensors. This list must have length 1 or 2 just like the EinsumOp kernel for CPU/GPU.

PiperOrigin-RevId: 272360882
2019-10-02 01:04:18 -07:00

181 lines
6.2 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Tests for tpu_function helpers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import importer
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.layers import convolutional
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import control_flow_util
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import special_math_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.platform import test
from tensorflow.python.tpu import tpu
from tensorflow.python.tpu import tpu_feed
from tensorflow.python.tpu import training_loop
class TPUContextTest(test.TestCase):
@test_util.deprecated_graph_mode_only
def testIsInContext(self):
"""Test that control_flow_util can check that we're in a TPU context."""
z1 = array_ops.identity(1)
pivot = control_flow_ops.no_op()
context = tpu.TPUReplicateContext(b"context", 1, pivot=pivot)
context.Enter()
z2 = array_ops.identity(1)
context.Exit()
self.assertFalse(control_flow_util.IsInXLAContext(z1.op))
self.assertTrue(control_flow_util.IsInXLAContext(z2.op))
class TPULayerRewriteTest(test.TestCase):
@test_util.deprecated_graph_mode_only
def testUsingInfeedQueueWithRegularizer(self):
"""Test that Layer regularizers can reference data created in loops."""
def make_regularizer(scale):
return lambda inputs: scale * math_ops.reduce_sum(math_ops.square(inputs))
def training_step(inputs, scale):
outputs = convolutional.conv2d(
inputs,
filters=16,
kernel_size=(3, 3),
data_format="channels_first",
kernel_regularizer=make_regularizer(scale))
loss = math_ops.reduce_mean(math_ops.square(outputs))
return loss.op
inputs = array_ops.zeros(shape=(128, 32, 32, 16))
scale = array_ops.ones(shape=())
infeed = tpu_feed.InfeedQueue(
tuple_types=[dtypes.float32, dtypes.float32],
tuple_shapes=[inputs.shape, scale.shape])
def loop():
return training_loop.repeat(5, training_step, infeed_queue=infeed)
# This should not throw an error.
tpu.rewrite(loop)
class TPUGraphPruneTest(test.TestCase):
def test_prune_unconnected_ops(self):
with ops.Graph().as_default():
a = array_ops.placeholder(dtype=dtypes.float32, name="a")
b = array_ops.placeholder(dtype=dtypes.float32, name="b")
constant_op.constant(1.0, name="constant")
x = variable_scope.get_variable(
name="x",
dtype=dtypes.float32,
shape=[],
use_resource=True,
initializer=init_ops.constant_initializer(2.0))
y = variable_scope.get_variable(
name="y",
dtype=dtypes.float32,
shape=[],
use_resource=True,
initializer=init_ops.constant_initializer(3.0))
math_ops.add(a, b)
math_ops.add(x, y)
graph_def = ops.get_default_graph().as_graph_def()
for node in graph_def.node:
# Attach a TPU_REPLICATE_ATTR to each node.
node.attr[tpu._TPU_REPLICATE_ATTR].s = b"0"
# Rewire placeholder "a" and variable "y" leaving them unconnected.
for (input_index, node_input) in enumerate(node.input):
if node_input == "b":
node.input[input_index] = "constant"
if node_input == "y":
node.input[input_index] = "x"
with ops.Graph().as_default() as graph:
# Reimport the graph and prune unconnected ops.
importer.import_graph_def(graph_def)
tpu.prune_unconnected_ops_from_xla(ops.get_default_graph())
# Verify that ops "a" and "x" still have TPU_REPLICATE_ATTR.
a = graph.get_operation_by_name("import/a").get_attr(
tpu._TPU_REPLICATE_ATTR)
self.assertEqual(b"0", a)
x = graph.get_operation_by_name("import/x").get_attr(
tpu._TPU_REPLICATE_ATTR)
self.assertEqual(b"0", x)
# Verify that ops "b" and "y" have TPU_REPLICATE_ATTR removed.
with self.assertRaisesRegexp(
ValueError,
"Operation \'import/b\' has no attr named \'_tpu_replicate\'"):
graph.get_operation_by_name("import/b").get_attr(
tpu._TPU_REPLICATE_ATTR)
with self.assertRaisesRegexp(
ValueError,
"Operation \'import/y\' has no attr named \'_tpu_replicate\'"):
graph.get_operation_by_name("import/y").get_attr(
tpu._TPU_REPLICATE_ATTR)
def do_einsum():
a = array_ops.placeholder(dtype=dtypes.float32, name="a", shape=[2, 3, 4])
b = array_ops.placeholder(dtype=dtypes.float32, name="b", shape=[2, 4, 5])
return special_math_ops.einsum("abc,acd->abd", a, b)
def find_einsum(g):
graph_def = g.as_graph_def()
for node in graph_def.node:
if node.op == "Einsum":
return True
return False
def find_xla_einsum(g):
graph_def = g.as_graph_def()
for node in graph_def.node:
if node.op == "XlaEinsum":
return True
return False
class TPUXlaEinsumTest(test.TestCase):
def test_tpu_rewrite_uses_xla_einsum(self):
with ops.Graph().as_default() as g:
tpu.rewrite(do_einsum)
self.assertTrue(find_einsum(g) or find_xla_einsum(g))
def test_default_does_not_use_xla_einsum(self):
with ops.Graph().as_default() as g:
do_einsum()
self.assertFalse(find_xla_einsum(g))
if __name__ == "__main__":
test.main()