STT-tensorflow/tensorflow/python/platform/benchmark.py

479 lines
17 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities to run benchmarks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numbers
import os
import re
import sys
import time
import types
import six
from tensorflow.core.protobuf import config_pb2
from tensorflow.core.protobuf import rewriter_config_pb2
from tensorflow.core.util import test_log_pb2
from tensorflow.python.client import timeline
from tensorflow.python.framework import ops
from tensorflow.python.platform import app
from tensorflow.python.platform import gfile
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util import tf_inspect
from tensorflow.python.util.tf_export import tf_export
# When a subclass of the Benchmark class is created, it is added to
# the registry automatically
GLOBAL_BENCHMARK_REGISTRY = set()
# Environment variable that determines whether benchmarks are written.
# See also tensorflow/core/util/reporter.h TestReporter::kTestReporterEnv.
TEST_REPORTER_TEST_ENV = "TEST_REPORT_FILE_PREFIX"
# Environment variable that lets the TensorFlow runtime allocate a new
# threadpool for each benchmark.
OVERRIDE_GLOBAL_THREADPOOL = "TF_OVERRIDE_GLOBAL_THREADPOOL"
def _rename_function(f, arg_num, name):
"""Rename the given function's name appears in the stack trace."""
func_code = six.get_function_code(f)
if six.PY2:
new_code = types.CodeType(arg_num, func_code.co_nlocals,
func_code.co_stacksize, func_code.co_flags,
func_code.co_code, func_code.co_consts,
func_code.co_names, func_code.co_varnames,
func_code.co_filename, name,
func_code.co_firstlineno, func_code.co_lnotab,
func_code.co_freevars, func_code.co_cellvars)
else:
new_code = types.CodeType(arg_num, 0, func_code.co_nlocals,
func_code.co_stacksize, func_code.co_flags,
func_code.co_code, func_code.co_consts,
func_code.co_names, func_code.co_varnames,
func_code.co_filename, name,
func_code.co_firstlineno, func_code.co_lnotab,
func_code.co_freevars, func_code.co_cellvars)
return types.FunctionType(new_code, f.__globals__, name, f.__defaults__,
f.__closure__)
def _global_report_benchmark(
name, iters=None, cpu_time=None, wall_time=None,
throughput=None, extras=None, metrics=None):
"""Method for recording a benchmark directly.
Args:
name: The BenchmarkEntry name.
iters: (optional) How many iterations were run
cpu_time: (optional) Total cpu time in seconds
wall_time: (optional) Total wall time in seconds
throughput: (optional) Throughput (in MB/s)
extras: (optional) Dict mapping string keys to additional benchmark info.
metrics: (optional) A list of dict representing metrics generated by the
benchmark. Each dict should contain keys 'name' and'value'. A dict
can optionally contain keys 'min_value' and 'max_value'.
Raises:
TypeError: if extras is not a dict.
IOError: if the benchmark output file already exists.
"""
logging.info("Benchmark [%s] iters: %d, wall_time: %g, cpu_time: %g,"
"throughput: %g, extras: %s, metrics: %s", name,
iters if iters is not None else -1,
wall_time if wall_time is not None else -1,
cpu_time if cpu_time is not None else -1,
throughput if throughput is not None else -1,
str(extras) if extras else "None",
str(metrics) if metrics else "None")
entries = test_log_pb2.BenchmarkEntries()
entry = entries.entry.add()
entry.name = name
if iters is not None:
entry.iters = iters
if cpu_time is not None:
entry.cpu_time = cpu_time
if wall_time is not None:
entry.wall_time = wall_time
if throughput is not None:
entry.throughput = throughput
if extras is not None:
if not isinstance(extras, dict):
raise TypeError("extras must be a dict")
for (k, v) in extras.items():
if isinstance(v, numbers.Number):
entry.extras[k].double_value = v
else:
entry.extras[k].string_value = str(v)
if metrics is not None:
if not isinstance(metrics, list):
raise TypeError("metrics must be a list")
for metric in metrics:
if "name" not in metric:
raise TypeError("metric must has a 'name' field")
if "value" not in metric:
raise TypeError("metric must has a 'value' field")
metric_entry = entry.metrics.add()
metric_entry.name = metric["name"]
metric_entry.value = metric["value"]
if "min_value" in metric:
metric_entry.min_value.value = metric["min_value"]
if "max_value" in metric:
metric_entry.max_value.value = metric["max_value"]
test_env = os.environ.get(TEST_REPORTER_TEST_ENV, None)
if test_env is None:
# Reporting was not requested, just print the proto
print(str(entries))
return
serialized_entry = entries.SerializeToString()
mangled_name = name.replace("/", "__")
output_path = "%s%s" % (test_env, mangled_name)
if gfile.Exists(output_path):
raise IOError("File already exists: %s" % output_path)
with gfile.GFile(output_path, "wb") as out:
out.write(serialized_entry)
class _BenchmarkRegistrar(type):
"""The Benchmark class registrar. Used by abstract Benchmark class."""
def __new__(mcs, clsname, base, attrs):
newclass = type.__new__(mcs, clsname, base, attrs)
if not newclass.is_abstract():
GLOBAL_BENCHMARK_REGISTRY.add(newclass)
return newclass
class ParameterizedBenchmark(_BenchmarkRegistrar):
"""Metaclass to generate parameterized benchmarks."""
def __new__(mcs, clsname, base, attrs):
param_config_list = attrs["_benchmark_parameters"]
for name in attrs.copy().keys():
if not name.startswith("benchmark"):
continue
original_benchmark = attrs[name]
del attrs[name]
for param_config in param_config_list:
test_name_suffix = param_config[0]
params = param_config[1:]
benchmark_name = name + "__" + test_name_suffix
if benchmark_name in attrs:
raise Exception(
"Benchmark named {} already defined.".format(benchmark_name))
def create_benchmark_function(params):
return lambda self: original_benchmark(self, *params)
benchmark = create_benchmark_function(params)
# Renaming is important because `report_benchmark` function looks up the
# function name in the stack trace.
attrs[benchmark_name] = _rename_function(benchmark, 1, benchmark_name)
return super(mcs, ParameterizedBenchmark).__new__(mcs, clsname, base, attrs)
class Benchmark(six.with_metaclass(_BenchmarkRegistrar, object)):
"""Abstract class that provides helper functions for running benchmarks.
Any class subclassing this one is immediately registered in the global
benchmark registry.
Only methods whose names start with the word "benchmark" will be run during
benchmarking.
"""
@classmethod
def is_abstract(cls):
# mro: (_BenchmarkRegistrar, Benchmark) means this is Benchmark
return len(cls.mro()) <= 2
def _get_name(self, overwrite_name=None):
"""Returns full name of class and method calling report_benchmark."""
# Find the caller method (outermost Benchmark class)
stack = tf_inspect.stack()
calling_class = None
name = None
for frame in stack[::-1]:
f_locals = frame[0].f_locals
f_self = f_locals.get("self", None)
if isinstance(f_self, Benchmark):
calling_class = f_self # Get the outermost stack Benchmark call
name = frame[3] # Get the method name
break
if calling_class is None:
raise ValueError("Unable to determine calling Benchmark class.")
# Use the method name, or overwrite_name is provided.
name = overwrite_name or name
# Prefix the name with the class name.
class_name = type(calling_class).__name__
name = "%s.%s" % (class_name, name)
return name
def report_benchmark(
self,
iters=None,
cpu_time=None,
wall_time=None,
throughput=None,
extras=None,
name=None,
metrics=None):
"""Report a benchmark.
Args:
iters: (optional) How many iterations were run
cpu_time: (optional) Median or mean cpu time in seconds.
wall_time: (optional) Median or mean wall time in seconds.
throughput: (optional) Throughput (in MB/s)
extras: (optional) Dict mapping string keys to additional benchmark info.
Values may be either floats or values that are convertible to strings.
name: (optional) Override the BenchmarkEntry name with `name`.
Otherwise it is inferred from the top-level method name.
metrics: (optional) A list of dict, where each dict has the keys below
name (required), string, metric name
value (required), double, metric value
min_value (optional), double, minimum acceptable metric value
max_value (optional), double, maximum acceptable metric value
"""
name = self._get_name(overwrite_name=name)
_global_report_benchmark(
name=name, iters=iters, cpu_time=cpu_time, wall_time=wall_time,
throughput=throughput, extras=extras, metrics=metrics)
@tf_export("test.benchmark_config")
def benchmark_config():
"""Returns a tf.compat.v1.ConfigProto for disabling the dependency optimizer.
Returns:
A TensorFlow ConfigProto object.
"""
config = config_pb2.ConfigProto()
config.graph_options.rewrite_options.dependency_optimization = (
rewriter_config_pb2.RewriterConfig.OFF)
return config
@tf_export("test.Benchmark")
class TensorFlowBenchmark(Benchmark):
"""Abstract class that provides helpers for TensorFlow benchmarks."""
def __init__(self):
# Allow TensorFlow runtime to allocate a new threadpool with different
# number of threads for each new benchmark.
os.environ[OVERRIDE_GLOBAL_THREADPOOL] = "1"
super(TensorFlowBenchmark, self).__init__()
@classmethod
def is_abstract(cls):
# mro: (_BenchmarkRegistrar, Benchmark, TensorFlowBenchmark) means
# this is TensorFlowBenchmark.
return len(cls.mro()) <= 3
def run_op_benchmark(self,
sess,
op_or_tensor,
feed_dict=None,
burn_iters=2,
min_iters=10,
store_trace=False,
store_memory_usage=True,
name=None,
extras=None,
mbs=0):
"""Run an op or tensor in the given session. Report the results.
Args:
sess: `Session` object to use for timing.
op_or_tensor: `Operation` or `Tensor` to benchmark.
feed_dict: A `dict` of values to feed for each op iteration (see the
`feed_dict` parameter of `Session.run`).
burn_iters: Number of burn-in iterations to run.
min_iters: Minimum number of iterations to use for timing.
store_trace: Boolean, whether to run an extra untimed iteration and
store the trace of iteration in returned extras.
The trace will be stored as a string in Google Chrome trace format
in the extras field "full_trace_chrome_format". Note that trace
will not be stored in test_log_pb2.TestResults proto.
store_memory_usage: Boolean, whether to run an extra untimed iteration,
calculate memory usage, and store that in extras fields.
name: (optional) Override the BenchmarkEntry name with `name`.
Otherwise it is inferred from the top-level method name.
extras: (optional) Dict mapping string keys to additional benchmark info.
Values may be either floats or values that are convertible to strings.
mbs: (optional) The number of megabytes moved by this op, used to
calculate the ops throughput.
Returns:
A `dict` containing the key-value pairs that were passed to
`report_benchmark`. If `store_trace` option is used, then
`full_chrome_trace_format` will be included in return dictionary even
though it is not passed to `report_benchmark` with `extras`.
"""
for _ in range(burn_iters):
sess.run(op_or_tensor, feed_dict=feed_dict)
deltas = [None] * min_iters
for i in range(min_iters):
start_time = time.time()
sess.run(op_or_tensor, feed_dict=feed_dict)
end_time = time.time()
delta = end_time - start_time
deltas[i] = delta
extras = extras if extras is not None else {}
unreported_extras = {}
if store_trace or store_memory_usage:
run_options = config_pb2.RunOptions(
trace_level=config_pb2.RunOptions.FULL_TRACE)
run_metadata = config_pb2.RunMetadata()
sess.run(op_or_tensor, feed_dict=feed_dict,
options=run_options, run_metadata=run_metadata)
tl = timeline.Timeline(run_metadata.step_stats)
if store_trace:
unreported_extras["full_trace_chrome_format"] = (
tl.generate_chrome_trace_format())
if store_memory_usage:
step_stats_analysis = tl.analyze_step_stats(show_memory=True)
allocator_maximums = step_stats_analysis.allocator_maximums
for k, v in allocator_maximums.items():
extras["allocator_maximum_num_bytes_%s" % k] = v.num_bytes
def _median(x):
if not x:
return -1
s = sorted(x)
l = len(x)
lm1 = l - 1
return (s[l//2] + s[lm1//2]) / 2.0
def _mean_and_stdev(x):
if not x:
return -1, -1
l = len(x)
mean = sum(x) / l
if l == 1:
return mean, -1
variance = sum([(e - mean) * (e - mean) for e in x]) / (l - 1)
return mean, math.sqrt(variance)
median_delta = _median(deltas)
benchmark_values = {
"iters": min_iters,
"wall_time": median_delta,
"extras": extras,
"name": name,
"throughput": mbs / median_delta
}
self.report_benchmark(**benchmark_values)
mean_delta, stdev_delta = _mean_and_stdev(deltas)
unreported_extras["wall_time_mean"] = mean_delta
unreported_extras["wall_time_stdev"] = stdev_delta
benchmark_values["extras"].update(unreported_extras)
return benchmark_values
def evaluate(self, tensors):
"""Evaluates tensors and returns numpy values.
Args:
tensors: A Tensor or a nested list/tuple of Tensors.
Returns:
tensors numpy values.
"""
sess = ops.get_default_session() or self.cached_session()
return sess.run(tensors)
def _run_benchmarks(regex):
"""Run benchmarks that match regex `regex`.
This function goes through the global benchmark registry, and matches
benchmark class and method names of the form
`module.name.BenchmarkClass.benchmarkMethod` to the given regex.
If a method matches, it is run.
Args:
regex: The string regular expression to match Benchmark classes against.
"""
registry = list(GLOBAL_BENCHMARK_REGISTRY)
# Match benchmarks in registry against regex
for benchmark in registry:
benchmark_name = "%s.%s" % (benchmark.__module__, benchmark.__name__)
attrs = dir(benchmark)
# Don't instantiate the benchmark class unless necessary
benchmark_instance = None
for attr in attrs:
if not attr.startswith("benchmark"):
continue
candidate_benchmark_fn = getattr(benchmark, attr)
if not callable(candidate_benchmark_fn):
continue
full_benchmark_name = "%s.%s" % (benchmark_name, attr)
if regex == "all" or re.search(regex, full_benchmark_name):
# Instantiate the class if it hasn't been instantiated
benchmark_instance = benchmark_instance or benchmark()
# Get the method tied to the class
instance_benchmark_fn = getattr(benchmark_instance, attr)
# Call the instance method
instance_benchmark_fn()
def benchmarks_main(true_main, argv=None):
"""Run benchmarks as declared in argv.
Args:
true_main: True main function to run if benchmarks are not requested.
argv: the command line arguments (if None, uses sys.argv).
"""
if argv is None:
argv = sys.argv
found_arg = [arg for arg in argv
if arg.startswith("--benchmarks=")
or arg.startswith("-benchmarks=")]
if found_arg:
# Remove --benchmarks arg from sys.argv
argv.remove(found_arg[0])
regex = found_arg[0].split("=")[1]
app.run(lambda _: _run_benchmarks(regex), argv=argv)
else:
true_main()