STT-tensorflow/tensorflow/python/keras/regularizers_test.py
Tomer Kaftan fc531df8ce Stop skipping KerasTensors for Keras tests that now work with KerasTensors.
PiperOrigin-RevId: 316543523
Change-Id: Iea54fa7ed735e239cda293304c6a17207b136ab7
2020-06-15 14:26:38 -07:00

209 lines
7.6 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for Keras regularizers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python import keras
from tensorflow.python.eager import context
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import regularizers
from tensorflow.python.keras import testing_utils
from tensorflow.python.keras.utils import np_utils
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
DATA_DIM = 5
NUM_CLASSES = 2
class KerasRegularizersTest(keras_parameterized.TestCase,
parameterized.TestCase):
def create_model(self, kernel_regularizer=None, activity_regularizer=None):
model = keras.models.Sequential()
model.add(keras.layers.Dense(NUM_CLASSES,
kernel_regularizer=kernel_regularizer,
activity_regularizer=activity_regularizer,
input_shape=(DATA_DIM,)))
return model
def get_data(self):
(x_train, y_train), (x_test, y_test) = testing_utils.get_test_data(
train_samples=10,
test_samples=10,
input_shape=(DATA_DIM,),
num_classes=NUM_CLASSES)
y_train = np_utils.to_categorical(y_train, NUM_CLASSES)
y_test = np_utils.to_categorical(y_test, NUM_CLASSES)
return (x_train, y_train), (x_test, y_test)
def create_multi_input_model_from(self, layer1, layer2):
input_1 = keras.layers.Input(shape=(DATA_DIM,))
input_2 = keras.layers.Input(shape=(DATA_DIM,))
out1 = layer1(input_1)
out2 = layer2(input_2)
out = keras.layers.Average()([out1, out2])
model = keras.models.Model([input_1, input_2], out)
model.add_loss(keras.backend.mean(out2))
model.add_loss(math_ops.reduce_sum(input_1))
return model
@keras_parameterized.run_all_keras_modes
@parameterized.named_parameters([
('l1', regularizers.l1()),
('l2', regularizers.l2()),
('l1_l2', regularizers.l1_l2()),
])
def test_kernel_regularization(self, regularizer):
(x_train, y_train), _ = self.get_data()
model = self.create_model(kernel_regularizer=regularizer)
model.compile(
loss='categorical_crossentropy',
optimizer='sgd',
run_eagerly=testing_utils.should_run_eagerly())
self.assertEqual(len(model.losses), 1)
model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0)
@keras_parameterized.run_all_keras_modes
@parameterized.named_parameters([
('l1', regularizers.l1()),
('l2', regularizers.l2()),
('l1_l2', regularizers.l1_l2()),
('l2_zero', keras.regularizers.l2(0.)),
])
def test_activity_regularization(self, regularizer):
(x_train, y_train), _ = self.get_data()
model = self.create_model(activity_regularizer=regularizer)
model.compile(
loss='categorical_crossentropy',
optimizer='sgd',
run_eagerly=testing_utils.should_run_eagerly())
self.assertEqual(len(model.losses), 1 if context.executing_eagerly() else 1)
model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0)
@keras_parameterized.run_all_keras_modes
@keras_parameterized.run_with_all_model_types
def test_zero_regularization(self):
# Verifies that training with zero regularization works.
x, y = np.ones((10, 10)), np.ones((10, 3))
model = testing_utils.get_model_from_layers(
[keras.layers.Dense(3, kernel_regularizer=keras.regularizers.l2(0))],
input_shape=(10,))
model.compile(
'sgd',
'mse',
run_eagerly=testing_utils.should_run_eagerly())
model.fit(x, y, batch_size=5, epochs=1)
def test_custom_regularizer_saving(self):
def my_regularizer(weights):
return math_ops.reduce_sum(math_ops.abs(weights))
inputs = keras.Input((10,))
outputs = keras.layers.Dense(1, kernel_regularizer=my_regularizer)(inputs)
model = keras.Model(inputs, outputs)
model2 = model.from_config(
model.get_config(), custom_objects={'my_regularizer': my_regularizer})
self.assertEqual(model2.layers[1].kernel_regularizer, my_regularizer)
@keras_parameterized.run_all_keras_modes
@parameterized.named_parameters([
('l1', regularizers.l1()),
('l2', regularizers.l2()),
('l1_l2', regularizers.l1_l2()),
])
def test_regularization_shared_layer(self, regularizer):
dense_layer = keras.layers.Dense(
NUM_CLASSES,
kernel_regularizer=regularizer,
activity_regularizer=regularizer)
model = self.create_multi_input_model_from(dense_layer, dense_layer)
model.compile(
loss='categorical_crossentropy',
optimizer='sgd',
run_eagerly=testing_utils.should_run_eagerly())
self.assertLen(model.losses, 5)
@keras_parameterized.run_all_keras_modes
@parameterized.named_parameters([
('l1', regularizers.l1()),
('l2', regularizers.l2()),
('l1_l2', regularizers.l1_l2()),
])
def test_regularization_shared_model(self, regularizer):
dense_layer = keras.layers.Dense(
NUM_CLASSES,
kernel_regularizer=regularizer,
activity_regularizer=regularizer)
input_tensor = keras.layers.Input(shape=(DATA_DIM,))
dummy_model = keras.models.Model(input_tensor, dense_layer(input_tensor))
model = self.create_multi_input_model_from(dummy_model, dummy_model)
model.compile(
loss='categorical_crossentropy',
optimizer='sgd',
run_eagerly=testing_utils.should_run_eagerly())
self.assertLen(model.losses, 6)
@keras_parameterized.run_all_keras_modes
@parameterized.named_parameters([
('l1', regularizers.l1()),
('l2', regularizers.l2()),
('l1_l2', regularizers.l1_l2()),
])
def test_regularization_shared_layer_in_different_models(self, regularizer):
shared_dense = keras.layers.Dense(
NUM_CLASSES,
kernel_regularizer=regularizer,
activity_regularizer=regularizer)
models = []
for _ in range(2):
input_tensor = keras.layers.Input(shape=(DATA_DIM,))
unshared_dense = keras.layers.Dense(
NUM_CLASSES, kernel_regularizer=regularizer)
out = unshared_dense(shared_dense(input_tensor))
models.append(keras.models.Model(input_tensor, out))
model = self.create_multi_input_model_from(
layer1=models[0], layer2=models[1])
model.compile(
loss='categorical_crossentropy',
optimizer='sgd',
run_eagerly=testing_utils.should_run_eagerly())
# We expect to see 9 losses on the model:
# - 2 from the 2 add_loss calls on the outer model.
# - 3 from the weight regularizers on the shared_dense layer, unshared_dense
# in inner model 1, unshared_dense in inner model 2.
# - 4 from activity regularizers on the shared_dense layer.
self.assertLen(model.losses, 9)
def test_deserialization_error(self):
with self.assertRaisesRegex(ValueError, 'Could not interpret regularizer'):
keras.regularizers.get(0)
if __name__ == '__main__':
test.main()