STT-tensorflow/tensorflow/python/keras/keras_parameterized.py

483 lines
17 KiB
Python

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for unit-testing Keras."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import itertools
import unittest
from absl.testing import parameterized
from tensorflow.python import keras
from tensorflow.python import tf2
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from tensorflow.python.keras import testing_utils
from tensorflow.python.platform import test
from tensorflow.python.util import nest
from tensorflow.python.util.compat import collections_abc
try:
import h5py # pylint:disable=g-import-not-at-top
except ImportError:
h5py = None
class TestCase(test.TestCase, parameterized.TestCase):
def tearDown(self):
keras.backend.clear_session()
super(TestCase, self).tearDown()
def run_with_all_saved_model_formats(
test_or_class=None,
exclude_formats=None):
"""Execute the decorated test with all Keras saved model formats).
This decorator is intended to be applied either to individual test methods in
a `keras_parameterized.TestCase` class, or directly to a test class that
extends it. Doing so will cause the contents of the individual test
method (or all test methods in the class) to be executed multiple times - once
for each Keras saved model format.
The Keras saved model formats include:
1. HDF5: 'h5'
2. SavedModel: 'tf'
Note: if stacking this decorator with absl.testing's parameterized decorators,
those should be at the bottom of the stack.
Various methods in `testing_utils` to get file path for saved models will
auto-generate a string of the two saved model formats. This allows unittests
to confirm the equivalence between the two Keras saved model formats.
For example, consider the following unittest:
```python
class MyTests(testing_utils.KerasTestCase):
@testing_utils.run_with_all_saved_model_formats
def test_foo(self):
save_format = testing_utils.get_save_format()
saved_model_dir = '/tmp/saved_model/'
model = keras.models.Sequential()
model.add(keras.layers.Dense(2, input_shape=(3,)))
model.add(keras.layers.Dense(3))
model.compile(loss='mse', optimizer='sgd', metrics=['acc'])
keras.models.save_model(model, saved_model_dir, save_format=save_format)
model = keras.models.load_model(saved_model_dir)
if __name__ == "__main__":
tf.test.main()
```
This test tries to save the model into the formats of 'hdf5', 'h5', 'keras',
'tensorflow', and 'tf'.
We can also annotate the whole class if we want this to apply to all tests in
the class:
```python
@testing_utils.run_with_all_saved_model_formats
class MyTests(testing_utils.KerasTestCase):
def test_foo(self):
save_format = testing_utils.get_save_format()
saved_model_dir = '/tmp/saved_model/'
model = keras.models.Sequential()
model.add(keras.layers.Dense(2, input_shape=(3,)))
model.add(keras.layers.Dense(3))
model.compile(loss='mse', optimizer='sgd', metrics=['acc'])
keras.models.save_model(model, saved_model_dir, save_format=save_format)
model = tf.keras.models.load_model(saved_model_dir)
if __name__ == "__main__":
tf.test.main()
```
Args:
test_or_class: test method or class to be annotated. If None,
this method returns a decorator that can be applied to a test method or
test class. If it is not None this returns the decorator applied to the
test or class.
exclude_formats: A collection of Keras saved model formats to not run.
(May also be a single format not wrapped in a collection).
Defaults to None.
Returns:
Returns a decorator that will run the decorated test method multiple times:
once for each desired Keras saved model format.
Raises:
ImportError: If abseil parameterized is not installed or not included as
a target dependency.
"""
# Exclude h5 save format if H5py isn't available.
if h5py is None:
exclude_formats.append(['h5'])
saved_model_formats = ['h5', 'tf']
params = [('_%s' % saved_format, saved_format)
for saved_format in saved_model_formats
if saved_format not in nest.flatten(exclude_formats)]
def single_method_decorator(f):
"""Decorator that constructs the test cases."""
# Use named_parameters so it can be individually run from the command line
@parameterized.named_parameters(*params)
@functools.wraps(f)
def decorated(self, saved_format, *args, **kwargs):
"""A run of a single test case w/ the specified model type."""
if saved_format == 'h5':
_test_h5_saved_model_format(f, self, *args, **kwargs)
elif saved_format == 'tf':
_test_tf_saved_model_format(f, self, *args, **kwargs)
else:
raise ValueError('Unknown model type: %s' % (saved_format,))
return decorated
return _test_or_class_decorator(test_or_class, single_method_decorator)
def _test_h5_saved_model_format(f, test_or_class, *args, **kwargs):
with testing_utils.saved_model_format_scope('h5'):
f(test_or_class, *args, **kwargs)
def _test_tf_saved_model_format(f, test_or_class, *args, **kwargs):
with testing_utils.saved_model_format_scope('tf'):
f(test_or_class, *args, **kwargs)
# TODO(kaftan): Possibly enable 'subclass_custom_build' when tests begin to pass
# it. Or perhaps make 'subclass' always use a custom build method.
def run_with_all_model_types(
test_or_class=None,
exclude_models=None):
"""Execute the decorated test with all Keras model types.
This decorator is intended to be applied either to individual test methods in
a `keras_parameterized.TestCase` class, or directly to a test class that
extends it. Doing so will cause the contents of the individual test
method (or all test methods in the class) to be executed multiple times - once
for each Keras model type.
The Keras model types are: ['functional', 'subclass', 'sequential']
Note: if stacking this decorator with absl.testing's parameterized decorators,
those should be at the bottom of the stack.
Various methods in `testing_utils` to get models will auto-generate a model
of the currently active Keras model type. This allows unittests to confirm
the equivalence between different Keras models.
For example, consider the following unittest:
```python
class MyTests(testing_utils.KerasTestCase):
@testing_utils.run_with_all_model_types(
exclude_models = ['sequential'])
def test_foo(self):
model = testing_utils.get_small_mlp(1, 4, input_dim=3)
optimizer = RMSPropOptimizer(learning_rate=0.001)
loss = 'mse'
metrics = ['mae']
model.compile(optimizer, loss, metrics=metrics)
inputs = np.zeros((10, 3))
targets = np.zeros((10, 4))
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1)
if __name__ == "__main__":
tf.test.main()
```
This test tries building a small mlp as both a functional model and as a
subclass model.
We can also annotate the whole class if we want this to apply to all tests in
the class:
```python
@testing_utils.run_with_all_model_types(exclude_models = ['sequential'])
class MyTests(testing_utils.KerasTestCase):
def test_foo(self):
model = testing_utils.get_small_mlp(1, 4, input_dim=3)
optimizer = RMSPropOptimizer(learning_rate=0.001)
loss = 'mse'
metrics = ['mae']
model.compile(optimizer, loss, metrics=metrics)
inputs = np.zeros((10, 3))
targets = np.zeros((10, 4))
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1)
if __name__ == "__main__":
tf.test.main()
```
Args:
test_or_class: test method or class to be annotated. If None,
this method returns a decorator that can be applied to a test method or
test class. If it is not None this returns the decorator applied to the
test or class.
exclude_models: A collection of Keras model types to not run.
(May also be a single model type not wrapped in a collection).
Defaults to None.
Returns:
Returns a decorator that will run the decorated test method multiple times:
once for each desired Keras model type.
Raises:
ImportError: If abseil parameterized is not installed or not included as
a target dependency.
"""
model_types = ['functional', 'subclass', 'sequential']
params = [('_%s' % model, model) for model in model_types
if model not in nest.flatten(exclude_models)]
def single_method_decorator(f):
"""Decorator that constructs the test cases."""
# Use named_parameters so it can be individually run from the command line
@parameterized.named_parameters(*params)
@functools.wraps(f)
def decorated(self, model_type, *args, **kwargs):
"""A run of a single test case w/ the specified model type."""
if model_type == 'functional':
_test_functional_model_type(f, self, *args, **kwargs)
elif model_type == 'subclass':
_test_subclass_model_type(f, self, *args, **kwargs)
elif model_type == 'sequential':
_test_sequential_model_type(f, self, *args, **kwargs)
else:
raise ValueError('Unknown model type: %s' % (model_type,))
return decorated
return _test_or_class_decorator(test_or_class, single_method_decorator)
def _test_functional_model_type(f, test_or_class, *args, **kwargs):
with testing_utils.model_type_scope('functional'):
f(test_or_class, *args, **kwargs)
def _test_subclass_model_type(f, test_or_class, *args, **kwargs):
with testing_utils.model_type_scope('subclass'):
f(test_or_class, *args, **kwargs)
def _test_sequential_model_type(f, test_or_class, *args, **kwargs):
with testing_utils.model_type_scope('sequential'):
f(test_or_class, *args, **kwargs)
def run_all_keras_modes(test_or_class=None,
config=None,
always_skip_v1=False,
always_skip_eager=False,
**kwargs):
"""Execute the decorated test with all keras execution modes.
This decorator is intended to be applied either to individual test methods in
a `keras_parameterized.TestCase` class, or directly to a test class that
extends it. Doing so will cause the contents of the individual test
method (or all test methods in the class) to be executed multiple times -
once executing in legacy graph mode, once running eagerly and with
`should_run_eagerly` returning True, and once running eagerly with
`should_run_eagerly` returning False.
If Tensorflow v2 behavior is enabled, legacy graph mode will be skipped, and
the test will only run twice.
Note: if stacking this decorator with absl.testing's parameterized decorators,
those should be at the bottom of the stack.
For example, consider the following unittest:
```python
class MyTests(testing_utils.KerasTestCase):
@testing_utils.run_all_keras_modes
def test_foo(self):
model = testing_utils.get_small_functional_mlp(1, 4, input_dim=3)
optimizer = RMSPropOptimizer(learning_rate=0.001)
loss = 'mse'
metrics = ['mae']
model.compile(
optimizer, loss, metrics=metrics,
run_eagerly=testing_utils.should_run_eagerly())
inputs = np.zeros((10, 3))
targets = np.zeros((10, 4))
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
dataset = dataset.repeat(100)
dataset = dataset.batch(10)
model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1)
if __name__ == "__main__":
tf.test.main()
```
This test will try compiling & fitting the small functional mlp using all
three Keras execution modes.
Args:
test_or_class: test method or class to be annotated. If None,
this method returns a decorator that can be applied to a test method or
test class. If it is not None this returns the decorator applied to the
test or class.
config: An optional config_pb2.ConfigProto to use to configure the
session when executing graphs.
always_skip_v1: If True, does not try running the legacy graph mode even
when Tensorflow v2 behavior is not enabled.
always_skip_eager: If True, does not execute the decorated test
with eager execution modes.
**kwargs: Additional kwargs for configuring tests for
in-progress Keras behaviors/ refactorings that we haven't fully
rolled out yet
Returns:
Returns a decorator that will run the decorated test method multiple times.
Raises:
ImportError: If abseil parameterized is not installed or not included as
a target dependency.
"""
skip_keras_tensors = kwargs.pop('skip_keras_tensors', False)
if kwargs:
raise ValueError('Unrecognized keyword args: {}'.format(kwargs))
params = [('_v2_function', 'v2_function')]
if not skip_keras_tensors:
params.append(('_v2_function_use_keras_tensors',
'v2_function_use_keras_tensors'))
if not always_skip_eager:
params.append(('_v2_eager', 'v2_eager'))
if not (always_skip_v1 or tf2.enabled()):
params.append(('_v1_session', 'v1_session'))
def single_method_decorator(f):
"""Decorator that constructs the test cases."""
# Use named_parameters so it can be individually run from the command line
@parameterized.named_parameters(*params)
@functools.wraps(f)
def decorated(self, run_mode, *args, **kwargs):
"""A run of a single test case w/ specified run mode."""
if run_mode == 'v1_session':
_v1_session_test(f, self, config, *args, **kwargs)
elif run_mode == 'v2_eager':
_v2_eager_test(f, self, *args, **kwargs)
elif run_mode == 'v2_function':
_v2_function_test(f, self, *args, **kwargs)
elif run_mode == 'v2_function_use_keras_tensors':
_v2_function_and_kerastensors_test(f, self, *args, **kwargs)
else:
return ValueError('Unknown run mode %s' % run_mode)
return decorated
return _test_or_class_decorator(test_or_class, single_method_decorator)
def _v1_session_test(f, test_or_class, config, *args, **kwargs):
with ops.get_default_graph().as_default():
with testing_utils.run_eagerly_scope(False):
with test_or_class.test_session(use_gpu=True, config=config):
f(test_or_class, *args, **kwargs)
def _v2_eager_test(f, test_or_class, *args, **kwargs):
with context.eager_mode():
with testing_utils.run_eagerly_scope(True):
f(test_or_class, *args, **kwargs)
def _v2_function_test(f, test_or_class, *args, **kwargs):
with context.eager_mode():
with testing_utils.run_eagerly_scope(False):
f(test_or_class, *args, **kwargs)
def _v2_function_and_kerastensors_test(f, test_or_class, *args, **kwargs):
with context.eager_mode():
with testing_utils.run_eagerly_scope(False):
with testing_utils.use_keras_tensors_scope(True):
f(test_or_class, *args, **kwargs)
def _test_or_class_decorator(test_or_class, single_method_decorator):
"""Decorate a test or class with a decorator intended for one method.
If the test_or_class is a class:
This will apply the decorator to all test methods in the class.
If the test_or_class is an iterable of already-parameterized test cases:
This will apply the decorator to all the cases, and then flatten the
resulting cross-product of test cases. This allows stacking the Keras
parameterized decorators w/ each other, and to apply them to test methods
that have already been marked with an absl parameterized decorator.
Otherwise, treat the obj as a single method and apply the decorator directly.
Args:
test_or_class: A test method (that may have already been decorated with a
parameterized decorator, or a test class that extends
keras_parameterized.TestCase
single_method_decorator:
A parameterized decorator intended for a single test method.
Returns:
The decorated result.
"""
def _decorate_test_or_class(obj):
if isinstance(obj, collections_abc.Iterable):
return itertools.chain.from_iterable(
single_method_decorator(method) for method in obj)
if isinstance(obj, type):
cls = obj
for name, value in cls.__dict__.copy().items():
if callable(value) and name.startswith(
unittest.TestLoader.testMethodPrefix):
setattr(cls, name, single_method_decorator(value))
cls = type(cls).__new__(type(cls), cls.__name__, cls.__bases__,
cls.__dict__.copy())
return cls
return single_method_decorator(obj)
if test_or_class is not None:
return _decorate_test_or_class(test_or_class)
return _decorate_test_or_class