STT-tensorflow/tensorflow/python/keras/constraints.py

313 lines
10 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=invalid-name
"""Constraints: functions that impose constraints on weight values.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import six
from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.utils.generic_utils import deserialize_keras_object
from tensorflow.python.keras.utils.generic_utils import serialize_keras_object
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.util.tf_export import keras_export
from tensorflow.tools.docs import doc_controls
@keras_export('keras.constraints.Constraint')
class Constraint(object):
def __call__(self, w):
return w
def get_config(self):
return {}
@keras_export('keras.constraints.MaxNorm', 'keras.constraints.max_norm')
class MaxNorm(Constraint):
"""MaxNorm weight constraint.
Constrains the weights incident to each hidden unit
to have a norm less than or equal to a desired value.
Also available via the shortcut function `tf.keras.constraints.max_norm`.
Arguments:
max_value: the maximum norm value for the incoming weights.
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
"""
def __init__(self, max_value=2, axis=0):
self.max_value = max_value
self.axis = axis
@doc_controls.do_not_generate_docs
def __call__(self, w):
norms = K.sqrt(
math_ops.reduce_sum(math_ops.square(w), axis=self.axis, keepdims=True))
desired = K.clip(norms, 0, self.max_value)
return w * (desired / (K.epsilon() + norms))
@doc_controls.do_not_generate_docs
def get_config(self):
return {'max_value': self.max_value, 'axis': self.axis}
@keras_export('keras.constraints.NonNeg', 'keras.constraints.non_neg')
class NonNeg(Constraint):
"""Constrains the weights to be non-negative.
Also available via the shortcut function `tf.keras.constraints.non_neg`.
"""
def __call__(self, w):
return w * math_ops.cast(math_ops.greater_equal(w, 0.), K.floatx())
@keras_export('keras.constraints.UnitNorm', 'keras.constraints.unit_norm')
class UnitNorm(Constraint):
"""Constrains the weights incident to each hidden unit to have unit norm.
Also available via the shortcut function `tf.keras.constraints.unit_norm`.
Arguments:
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
"""
def __init__(self, axis=0):
self.axis = axis
@doc_controls.do_not_generate_docs
def __call__(self, w):
return w / (
K.epsilon() + K.sqrt(
math_ops.reduce_sum(
math_ops.square(w), axis=self.axis, keepdims=True)))
@doc_controls.do_not_generate_docs
def get_config(self):
return {'axis': self.axis}
@keras_export('keras.constraints.MinMaxNorm', 'keras.constraints.min_max_norm')
class MinMaxNorm(Constraint):
"""MinMaxNorm weight constraint.
Constrains the weights incident to each hidden unit
to have the norm between a lower bound and an upper bound.
Also available via the shortcut function `tf.keras.constraints.min_max_norm`.
Arguments:
min_value: the minimum norm for the incoming weights.
max_value: the maximum norm for the incoming weights.
rate: rate for enforcing the constraint: weights will be
rescaled to yield
`(1 - rate) * norm + rate * norm.clip(min_value, max_value)`.
Effectively, this means that rate=1.0 stands for strict
enforcement of the constraint, while rate<1.0 means that
weights will be rescaled at each step to slowly move
towards a value inside the desired interval.
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
"""
def __init__(self, min_value=0.0, max_value=1.0, rate=1.0, axis=0):
self.min_value = min_value
self.max_value = max_value
self.rate = rate
self.axis = axis
@doc_controls.do_not_generate_docs
def __call__(self, w):
norms = K.sqrt(
math_ops.reduce_sum(math_ops.square(w), axis=self.axis, keepdims=True))
desired = (
self.rate * K.clip(norms, self.min_value, self.max_value) +
(1 - self.rate) * norms)
return w * (desired / (K.epsilon() + norms))
@doc_controls.do_not_generate_docs
def get_config(self):
return {
'min_value': self.min_value,
'max_value': self.max_value,
'rate': self.rate,
'axis': self.axis
}
@keras_export('keras.constraints.RadialConstraint',
'keras.constraints.radial_constraint')
class RadialConstraint(Constraint):
"""Constrains `Conv2D` kernel weights to be the same for each radius.
Also available via the shortcut function
`tf.keras.constraints.radial_constraint`.
For example, the desired output for the following 4-by-4 kernel:
```
kernel = [[v_00, v_01, v_02, v_03],
[v_10, v_11, v_12, v_13],
[v_20, v_21, v_22, v_23],
[v_30, v_31, v_32, v_33]]
```
is this::
```
kernel = [[v_11, v_11, v_11, v_11],
[v_11, v_33, v_33, v_11],
[v_11, v_33, v_33, v_11],
[v_11, v_11, v_11, v_11]]
```
This constraint can be applied to any `Conv2D` layer version, including
`Conv2DTranspose` and `SeparableConv2D`, and with either `"channels_last"` or
`"channels_first"` data format. The method assumes the weight tensor is of
shape `(rows, cols, input_depth, output_depth)`.
"""
@doc_controls.do_not_generate_docs
def __call__(self, w):
w_shape = w.shape
if w_shape.rank is None or w_shape.rank != 4:
raise ValueError(
'The weight tensor must be of rank 4, but is of shape: %s' % w_shape)
height, width, channels, kernels = w_shape
w = K.reshape(w, (height, width, channels * kernels))
# TODO(cpeter): Switch map_fn for a faster tf.vectorized_map once K.switch
# is supported.
w = K.map_fn(
self._kernel_constraint,
K.stack(array_ops.unstack(w, axis=-1), axis=0))
return K.reshape(K.stack(array_ops.unstack(w, axis=0), axis=-1),
(height, width, channels, kernels))
def _kernel_constraint(self, kernel):
"""Radially constraints a kernel with shape (height, width, channels)."""
padding = K.constant([[1, 1], [1, 1]], dtype='int32')
kernel_shape = K.shape(kernel)[0]
start = K.cast(kernel_shape / 2, 'int32')
kernel_new = K.switch(
K.cast(math_ops.floormod(kernel_shape, 2), 'bool'),
lambda: kernel[start - 1:start, start - 1:start],
lambda: kernel[start - 1:start, start - 1:start] + K.zeros( # pylint: disable=g-long-lambda
(2, 2), dtype=kernel.dtype))
index = K.switch(
K.cast(math_ops.floormod(kernel_shape, 2), 'bool'),
lambda: K.constant(0, dtype='int32'),
lambda: K.constant(1, dtype='int32'))
while_condition = lambda index, *args: K.less(index, start)
def body_fn(i, array):
return i + 1, array_ops.pad(
array,
padding,
constant_values=kernel[start + i, start + i])
_, kernel_new = control_flow_ops.while_loop(
while_condition,
body_fn,
[index, kernel_new],
shape_invariants=[index.get_shape(),
tensor_shape.TensorShape([None, None])])
return kernel_new
# Aliases.
max_norm = MaxNorm
non_neg = NonNeg
unit_norm = UnitNorm
min_max_norm = MinMaxNorm
radial_constraint = RadialConstraint
# Legacy aliases.
maxnorm = max_norm
nonneg = non_neg
unitnorm = unit_norm
@keras_export('keras.constraints.serialize')
def serialize(constraint):
return serialize_keras_object(constraint)
@keras_export('keras.constraints.deserialize')
def deserialize(config, custom_objects=None):
return deserialize_keras_object(
config,
module_objects=globals(),
custom_objects=custom_objects,
printable_module_name='constraint')
@keras_export('keras.constraints.get')
def get(identifier):
if identifier is None:
return None
if isinstance(identifier, dict):
return deserialize(identifier)
elif isinstance(identifier, six.string_types):
config = {'class_name': str(identifier), 'config': {}}
return deserialize(config)
elif callable(identifier):
return identifier
else:
raise ValueError('Could not interpret constraint identifier: ' +
str(identifier))