179 lines
5.6 KiB
Python
179 lines
5.6 KiB
Python
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for Keras combinations."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
|
|
from absl.testing import parameterized
|
|
|
|
from tensorflow.python import tf2
|
|
from tensorflow.python.eager import context
|
|
from tensorflow.python.keras import combinations
|
|
from tensorflow.python.keras import models as keras_models
|
|
from tensorflow.python.keras import testing_utils
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class CombinationsTest(test.TestCase):
|
|
|
|
def test_run_all_keras_modes(self):
|
|
test_params = []
|
|
|
|
class ExampleTest(parameterized.TestCase):
|
|
|
|
def runTest(self):
|
|
pass
|
|
|
|
@combinations.generate(combinations.keras_mode_combinations())
|
|
def testBody(self):
|
|
mode = "eager" if context.executing_eagerly() else "graph"
|
|
should_run_eagerly = testing_utils.should_run_eagerly()
|
|
test_params.append((mode, should_run_eagerly))
|
|
|
|
e = ExampleTest()
|
|
if not tf2.enabled():
|
|
e.testBody_test_mode_graph_runeagerly_False()
|
|
e.testBody_test_mode_eager_runeagerly_True()
|
|
e.testBody_test_mode_eager_runeagerly_False()
|
|
|
|
if not tf2.enabled():
|
|
self.assertLen(test_params, 3)
|
|
self.assertAllEqual(test_params, [
|
|
("graph", False),
|
|
("eager", True),
|
|
("eager", False),
|
|
])
|
|
|
|
ts = unittest.makeSuite(ExampleTest)
|
|
res = unittest.TestResult()
|
|
ts.run(res)
|
|
self.assertLen(test_params, 6)
|
|
else:
|
|
self.assertLen(test_params, 2)
|
|
self.assertAllEqual(test_params, [
|
|
("eager", True),
|
|
("eager", False),
|
|
])
|
|
|
|
ts = unittest.makeSuite(ExampleTest)
|
|
res = unittest.TestResult()
|
|
ts.run(res)
|
|
self.assertLen(test_params, 4)
|
|
|
|
def test_generate_keras_mode_eager_only(self):
|
|
result = combinations.keras_mode_combinations(mode=["eager"])
|
|
self.assertLen(result, 2)
|
|
self.assertEqual(result[0], {"mode": "eager", "run_eagerly": True})
|
|
self.assertEqual(result[1], {"mode": "eager", "run_eagerly": False})
|
|
|
|
def test_generate_keras_mode_skip_run_eagerly(self):
|
|
result = combinations.keras_mode_combinations(run_eagerly=[False])
|
|
if tf2.enabled():
|
|
self.assertLen(result, 1)
|
|
self.assertEqual(result[0], {"mode": "eager", "run_eagerly": False})
|
|
else:
|
|
self.assertLen(result, 2)
|
|
self.assertEqual(result[0], {"mode": "eager", "run_eagerly": False})
|
|
self.assertEqual(result[1], {"mode": "graph", "run_eagerly": False})
|
|
|
|
def test_run_all_keras_model_types(self):
|
|
model_types = []
|
|
models = []
|
|
|
|
class ExampleTest(parameterized.TestCase):
|
|
|
|
def runTest(self):
|
|
pass
|
|
|
|
@combinations.generate(combinations.keras_model_type_combinations())
|
|
def testBody(self):
|
|
model_types.append(testing_utils.get_model_type())
|
|
models.append(testing_utils.get_small_mlp(1, 4, input_dim=3))
|
|
|
|
e = ExampleTest()
|
|
e.testBody_test_modeltype_functional()
|
|
e.testBody_test_modeltype_subclass()
|
|
e.testBody_test_modeltype_sequential()
|
|
|
|
self.assertLen(model_types, 3)
|
|
self.assertAllEqual(model_types, [
|
|
"functional",
|
|
"subclass",
|
|
"sequential"
|
|
])
|
|
|
|
# Validate that the models are what they should be
|
|
self.assertTrue(models[0]._is_graph_network)
|
|
self.assertFalse(models[1]._is_graph_network)
|
|
self.assertNotIsInstance(models[0], keras_models.Sequential)
|
|
self.assertNotIsInstance(models[1], keras_models.Sequential)
|
|
self.assertIsInstance(models[2], keras_models.Sequential)
|
|
|
|
ts = unittest.makeSuite(ExampleTest)
|
|
res = unittest.TestResult()
|
|
ts.run(res)
|
|
|
|
self.assertLen(model_types, 6)
|
|
|
|
def test_combine_combinations(self):
|
|
test_cases = []
|
|
|
|
@combinations.generate(combinations.times(
|
|
combinations.keras_mode_combinations(),
|
|
combinations.keras_model_type_combinations()))
|
|
class ExampleTest(parameterized.TestCase):
|
|
|
|
def runTest(self):
|
|
pass
|
|
|
|
@parameterized.named_parameters(dict(testcase_name="_arg",
|
|
arg=True))
|
|
def testBody(self, arg):
|
|
del arg
|
|
mode = "eager" if context.executing_eagerly() else "graph"
|
|
should_run_eagerly = testing_utils.should_run_eagerly()
|
|
test_cases.append((mode, should_run_eagerly,
|
|
testing_utils.get_model_type()))
|
|
|
|
ts = unittest.makeSuite(ExampleTest)
|
|
res = unittest.TestResult()
|
|
ts.run(res)
|
|
|
|
expected_combinations = [
|
|
("eager", False, "functional"),
|
|
("eager", False, "sequential"),
|
|
("eager", False, "subclass"),
|
|
("eager", True, "functional"),
|
|
("eager", True, "sequential"),
|
|
("eager", True, "subclass"),
|
|
]
|
|
|
|
if not tf2.enabled():
|
|
expected_combinations.extend([
|
|
("graph", False, "functional"),
|
|
("graph", False, "sequential"),
|
|
("graph", False, "subclass"),
|
|
])
|
|
|
|
self.assertAllEqual(sorted(test_cases), expected_combinations)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|