STT-tensorflow/tensorflow/python/keras/backend.py

6398 lines
197 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=protected-access
# pylint: disable=redefined-outer-name
# pylint: disable=redefined-builtin
"""Keras backend API.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import itertools
import json
import os
import sys
import threading
import weakref
import numpy as np
from tensorflow.core.protobuf import config_pb2
from tensorflow.python import tf2
from tensorflow.python.client import session as session_module
from tensorflow.python.distribute import distribute_coordinator as dc
from tensorflow.python.distribute import distribute_coordinator_context as dc_context
from tensorflow.python.distribute import distribution_strategy_context
from tensorflow.python.eager import context
from tensorflow.python.eager import function as eager_function
from tensorflow.python.eager import lift_to_graph
from tensorflow.python.framework import composite_tensor
from tensorflow.python.framework import config
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import device as tfdev
from tensorflow.python.framework import dtypes as dtypes_module
from tensorflow.python.framework import func_graph
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_spec
from tensorflow.python.framework import tensor_util
from tensorflow.python.keras import backend_config
from tensorflow.python.keras.engine import keras_tensor
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import clip_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import control_flow_util
from tensorflow.python.ops import ctc_ops as ctc
from tensorflow.python.ops import functional_ops
from tensorflow.python.ops import gradients as gradients_module
from tensorflow.python.ops import image_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import linalg_ops
from tensorflow.python.ops import logging_ops
from tensorflow.python.ops import map_fn as map_fn_lib
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import nn
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import sparse_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import tensor_array_grad # pylint: disable=unused-import
from tensorflow.python.ops import tensor_array_ops
from tensorflow.python.ops import variables as variables_module
from tensorflow.python.ops.ragged import ragged_concat_ops
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import moving_averages
from tensorflow.python.training.tracking import util as tracking_util
from tensorflow.python.util import dispatch
from tensorflow.python.util import nest
from tensorflow.python.util import object_identity
from tensorflow.python.util import tf_contextlib
from tensorflow.python.util import tf_inspect
from tensorflow.python.util.deprecation import deprecated
from tensorflow.python.util.tf_export import keras_export
py_all = all
py_sum = sum
py_any = any
# INTERNAL UTILS
# The internal graph maintained by Keras and used by the symbolic Keras APIs
# while executing eagerly (such as the functional API for model-building).
# This is thread-local to allow building separate models in different threads
# concurrently, but comes at the cost of not being able to build one model
# across threads.
_GRAPH = threading.local()
# A graph which is used for constructing functions in eager mode.
_CURRENT_SCRATCH_GRAPH = threading.local()
# This is a thread local object that will hold the default internal TF session
# used by Keras. It can be set manually via `set_session(sess)`.
_SESSION = threading.local()
# _DUMMY_EAGER_GRAPH.key is used as a key in _GRAPH_LEARNING_PHASES.
# We keep a separate reference to it to make sure it does not get removed from
# _GRAPH_LEARNING_PHASES.
# _DummyEagerGraph inherits from threading.local to make its `key` attribute
# thread local. This is needed to make set_learning_phase affect only the
# current thread during eager execution (see b/123096885 for more details).
class _DummyEagerGraph(threading.local):
"""_DummyEagerGraph provides a thread local `key` attribute.
We can't use threading.local directly, i.e. without subclassing, because
gevent monkey patches threading.local and its version does not support
weak references.
"""
class _WeakReferencableClass(object):
"""This dummy class is needed for two reasons.
- We need something that supports weak references. Basic types like string
and ints don't.
- We need something whose hash and equality are based on object identity
to make sure they are treated as different keys to _GRAPH_LEARNING_PHASES.
An empty Python class satisfies both of these requirements.
"""
pass
def __init__(self):
# Constructors for classes subclassing threading.local run once
# per thread accessing something in the class. Thus, each thread will
# get a different key.
super(_DummyEagerGraph, self).__init__()
self.key = _DummyEagerGraph._WeakReferencableClass()
self.learning_phase_is_set = False
_DUMMY_EAGER_GRAPH = _DummyEagerGraph()
# This boolean flag can be set to True to leave variable initialization
# up to the user.
# Change its value via `manual_variable_initialization(value)`.
_MANUAL_VAR_INIT = False
# This list holds the available devices.
# It is populated when `_get_available_gpus()` is called for the first time.
# We assume our devices don't change henceforth.
_LOCAL_DEVICES = None
# The below functions are kept accessible from backend for compatibility.
epsilon = backend_config.epsilon
floatx = backend_config.floatx
image_data_format = backend_config.image_data_format
set_epsilon = backend_config.set_epsilon
set_floatx = backend_config.set_floatx
set_image_data_format = backend_config.set_image_data_format
@keras_export('keras.backend.backend')
def backend():
"""Publicly accessible method for determining the current backend.
Only exists for API compatibility with multi-backend Keras.
Returns:
The string "tensorflow".
"""
return 'tensorflow'
@keras_export('keras.backend.cast_to_floatx')
@dispatch.add_dispatch_support
def cast_to_floatx(x):
"""Cast a Numpy array to the default Keras float type.
Arguments:
x: Numpy array or TensorFlow tensor.
Returns:
The same array (Numpy array if `x` was a Numpy array, or TensorFlow tensor
if `x` was a tensor), cast to its new type.
Example:
>>> tf.keras.backend.floatx()
'float32'
>>> arr = np.array([1.0, 2.0], dtype='float64')
>>> arr.dtype
dtype('float64')
>>> new_arr = cast_to_floatx(arr)
>>> new_arr
array([1., 2.], dtype=float32)
>>> new_arr.dtype
dtype('float32')
"""
if isinstance(x, (ops.Tensor,
variables_module.Variable,
sparse_tensor.SparseTensor)):
return math_ops.cast(x, dtype=floatx())
return np.asarray(x, dtype=floatx())
# A global dictionary mapping graph objects to an index of counters used
# for various layer/optimizer names in each graph.
# Allows to give unique autogenerated names to layers, in a graph-specific way.
PER_GRAPH_OBJECT_NAME_UIDS = weakref.WeakKeyDictionary()
@keras_export('keras.backend.get_uid')
def get_uid(prefix=''):
"""Associates a string prefix with an integer counter in a TensorFlow graph.
Arguments:
prefix: String prefix to index.
Returns:
Unique integer ID.
Example:
>>> get_uid('dense')
1
>>> get_uid('dense')
2
"""
graph = get_graph()
if graph not in PER_GRAPH_OBJECT_NAME_UIDS:
PER_GRAPH_OBJECT_NAME_UIDS[graph] = collections.defaultdict(int)
layer_name_uids = PER_GRAPH_OBJECT_NAME_UIDS[graph]
layer_name_uids[prefix] += 1
return layer_name_uids[prefix]
@keras_export('keras.backend.reset_uids')
def reset_uids():
"""Resets graph identifiers.
"""
PER_GRAPH_OBJECT_NAME_UIDS.clear()
@keras_export('keras.backend.clear_session')
def clear_session():
"""Resets all state generated by Keras.
Keras manages a global state, which it uses to implement the Functional
model-building API and to uniquify autogenerated layer names.
If you are creating many models in a loop, this global state will consume
an increasing amount of memory over time, and you may want to clear it.
Calling `clear_session()` releases the global state: this helps avoid clutter
from old models and layers, especially when memory is limited.
Example 1: calling `clear_session()` when creating models in a loop
```python
for _ in range(100):
# Without `clear_session()`, each iteration of this loop will
# slightly increase the size of the global state managed by Keras
model = tf.keras.Sequential([tf.keras.layers.Dense(10) for _ in range(10)])
for _ in range(100):
# With `clear_session()` called at the beginning,
# Keras starts with a blank state at each iteration
# and memory consumption is constant over time.
tf.keras.backend.clear_session()
model = tf.keras.Sequential([tf.keras.layers.Dense(10) for _ in range(10)])
```
Example 2: resetting the layer name generation counter
>>> import tensorflow as tf
>>> layers = [tf.keras.layers.Dense(10) for _ in range(10)]
>>> new_layer = tf.keras.layers.Dense(10)
>>> print(new_layer.name)
dense_10
>>> tf.keras.backend.set_learning_phase(1)
>>> print(tf.keras.backend.learning_phase())
1
>>> tf.keras.backend.clear_session()
>>> new_layer = tf.keras.layers.Dense(10)
>>> print(new_layer.name)
dense
"""
global _SESSION
global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned
global _GRAPH_VARIABLES # pylint: disable=global-variable-not-assigned
global _GRAPH_TF_OPTIMIZERS # pylint: disable=global-variable-not-assigned
global _GRAPH
_GRAPH.graph = None
ops.reset_default_graph()
reset_uids()
_SESSION.session = None
graph = get_graph()
with graph.as_default():
_DUMMY_EAGER_GRAPH.learning_phase_is_set = False
_GRAPH_LEARNING_PHASES.clear()
# Create the learning phase placeholder in graph using the default factory.
_GRAPH_LEARNING_PHASES.setdefault(graph)
_GRAPH_VARIABLES.pop(graph, None)
_GRAPH_TF_OPTIMIZERS.pop(graph, None)
@keras_export('keras.backend.manual_variable_initialization')
def manual_variable_initialization(value):
"""Sets the manual variable initialization flag.
This boolean flag determines whether
variables should be initialized
as they are instantiated (default), or if
the user should handle the initialization
(e.g. via `tf.compat.v1.initialize_all_variables()`).
Arguments:
value: Python boolean.
"""
global _MANUAL_VAR_INIT
_MANUAL_VAR_INIT = value
@keras_export('keras.backend.learning_phase')
def learning_phase():
"""Returns the learning phase flag.
The learning phase flag is a bool tensor (0 = test, 1 = train)
to be passed as input to any Keras function
that uses a different behavior at train time and test time.
Returns:
Learning phase (scalar integer tensor or Python integer).
"""
graph = ops.get_default_graph()
if graph is getattr(_GRAPH, 'graph', None):
# Don't enter an init_scope for the learning phase if eager execution
# is enabled but we're inside the Keras workspace graph.
learning_phase = symbolic_learning_phase()
else:
with ops.init_scope():
# We always check & set the learning phase inside the init_scope,
# otherwise the wrong default_graph will be used to look up the learning
# phase inside of functions & defuns.
#
# This is because functions & defuns (both in graph & in eager mode)
# will always execute non-eagerly using a function-specific default
# subgraph.
learning_phase = _GRAPH_LEARNING_PHASES[None]
_mark_func_graph_as_unsaveable(graph, learning_phase)
return learning_phase
def global_learning_phase_is_set():
return _DUMMY_EAGER_GRAPH.learning_phase_is_set
def _mark_func_graph_as_unsaveable(graph, learning_phase):
"""Mark func graph as unsaveable due to use of symbolic keras learning phase.
Functions that capture the symbolic learning phase cannot be exported to
SavedModel. Mark the funcgraph as unsaveable, so that an error will be raised
if it is exported.
Args:
graph: Graph or FuncGraph object.
learning_phase: Learning phase placeholder or int defined in the graph.
"""
if graph.building_function and is_placeholder(learning_phase):
graph.mark_as_unsaveable(
'The keras learning phase placeholder was used inside a function. '
'Exporting placeholders is not supported when saving out a SavedModel. '
'Please call `tf.keras.backend.set_learning_phase(0)` in the function '
'to set the learning phase to a constant value.')
def symbolic_learning_phase():
graph = get_graph()
with graph.as_default():
return _GRAPH_LEARNING_PHASES[graph]
def _default_learning_phase():
if context.executing_eagerly():
return 0
else:
with name_scope(''):
return array_ops.placeholder_with_default(
False, shape=(), name='keras_learning_phase')
@deprecated('2020-10-11',
'Simply pass a True/False value to the `training` argument '
'of the `__call__` method of your layer or model.')
@keras_export('keras.backend.set_learning_phase')
def set_learning_phase(value):
"""Sets the learning phase to a fixed value.
The backend learning phase affects any code that calls
`backend.learning_phase()`
In particular, all Keras built-in layers use the learning phase as the default
for the `training` arg to `Layer.__call__`.
User-written layers and models can achieve the same behavior with code that
looks like:
```python
def call(self, inputs, training=None):
if training is None:
training = backend.learning_phase()
```
Arguments:
value: Learning phase value, either 0 or 1 (integers).
0 = test, 1 = train
Raises:
ValueError: if `value` is neither `0` nor `1`.
"""
deprecated_internal_set_learning_phase(value)
def deprecated_internal_set_learning_phase(value):
"""A deprecated internal implementation of set_learning_phase.
This method is an internal-only version of `set_learning_phase` that
does not raise a deprecation error. It is required because
saved_model needs to keep working with user code that uses the deprecated
learning phase methods until those apis are fully removed from the public api.
Specifically SavedModel saving needs to make sure the learning phase is 0
during tracing even if users overwrote it to a different value.
But, we don't want to raise deprecation warnings for users when savedmodel
sets learning phase just for compatibility with code that relied on
explicitly setting the learning phase for other values.
Arguments:
value: Learning phase value, either 0 or 1 (integers). 0 = test, 1 = train
Raises:
ValueError: if `value` is neither `0` nor `1`.
"""
global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned
if value not in {0, 1}:
raise ValueError('Expected learning phase to be 0 or 1.')
with ops.init_scope():
if context.executing_eagerly():
# In an eager context, the learning phase values applies to both the eager
# context and the internal Keras graph.
_DUMMY_EAGER_GRAPH.learning_phase_is_set = True
_GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH.key] = value
_GRAPH_LEARNING_PHASES[get_graph()] = value
@deprecated('2020-10-11',
'Simply pass a True/False value to the `training` argument '
'of the `__call__` method of your layer or model.')
@keras_export('keras.backend.learning_phase_scope')
@tf_contextlib.contextmanager
def learning_phase_scope(value):
"""Provides a scope within which the learning phase is equal to `value`.
The learning phase gets restored to its original value upon exiting the scope.
Arguments:
value: Learning phase value, either 0 or 1 (integers).
0 = test, 1 = train
Yields:
None.
Raises:
ValueError: if `value` is neither `0` nor `1`.
"""
with deprecated_internal_learning_phase_scope(value):
try:
yield
finally:
pass
@tf_contextlib.contextmanager
def deprecated_internal_learning_phase_scope(value):
"""An internal-only version of `learning_phase_scope`.
Unlike the public method, this method does not raise a deprecation warning.
This is needed because saved model saving needs to set learning phase
to maintain compatibility
with code that sets/gets the learning phase, but saved model
saving itself shouldn't raise a deprecation warning.
We can get rid of this method and its usages when the public api is
removed.
Arguments:
value: Learning phase value, either 0 or 1 (integers). 0 = test, 1 = train
Yields:
None.
Raises:
ValueError: if `value` is neither `0` nor `1`.
"""
global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned
if value not in {0, 1}:
raise ValueError('Expected learning phase to be 0 or 1.')
with ops.init_scope():
if context.executing_eagerly():
previous_eager_value = _GRAPH_LEARNING_PHASES.get(
_DUMMY_EAGER_GRAPH.key, None)
previous_graph_value = _GRAPH_LEARNING_PHASES.get(get_graph(), None)
learning_phase_previously_set = _DUMMY_EAGER_GRAPH.learning_phase_is_set
try:
deprecated_internal_set_learning_phase(value)
yield
finally:
# Restore learning phase to initial value.
if not learning_phase_previously_set:
_DUMMY_EAGER_GRAPH.learning_phase_is_set = False
with ops.init_scope():
if context.executing_eagerly():
if previous_eager_value is not None:
_GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH.key] = previous_eager_value
elif _DUMMY_EAGER_GRAPH.key in _GRAPH_LEARNING_PHASES:
del _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH.key]
graph = get_graph()
if previous_graph_value is not None:
_GRAPH_LEARNING_PHASES[graph] = previous_graph_value
elif graph in _GRAPH_LEARNING_PHASES:
del _GRAPH_LEARNING_PHASES[graph]
@tf_contextlib.contextmanager
def eager_learning_phase_scope(value):
"""Internal scope that sets the learning phase in eager / tf.function only.
Arguments:
value: Learning phase value, either 0 or 1 (integers).
0 = test, 1 = train
Yields:
None.
Raises:
ValueError: if `value` is neither `0` nor `1`.
"""
global _GRAPH_LEARNING_PHASES # pylint: disable=global-variable-not-assigned
assert value in {0, 1}
assert ops.executing_eagerly_outside_functions()
global_learning_phase_was_set = global_learning_phase_is_set()
if global_learning_phase_was_set:
previous_value = learning_phase()
try:
_GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH.key] = value
yield
finally:
# Restore learning phase to initial value or unset.
if global_learning_phase_was_set:
_GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH.key] = previous_value
else:
del _GRAPH_LEARNING_PHASES[_DUMMY_EAGER_GRAPH.key]
def _current_graph(op_input_list):
"""Return the graph members of `op_input_list`, or the current graph."""
return ops._get_graph_from_inputs(op_input_list)
def _get_session(op_input_list=()):
"""Returns the session object for the current thread."""
global _SESSION
default_session = ops.get_default_session()
if default_session is not None:
session = default_session
else:
if ops.inside_function():
raise RuntimeError('Cannot get session inside Tensorflow graph function.')
# If we don't have a session, or that session does not match the current
# graph, create and cache a new session.
if (getattr(_SESSION, 'session', None) is None or
_SESSION.session.graph is not _current_graph(op_input_list)):
# If we are creating the Session inside a tf.distribute.Strategy scope,
# we ask the strategy for the right session options to use.
if distribution_strategy_context.has_strategy():
configure_and_create_distributed_session(
distribution_strategy_context.get_strategy())
else:
_SESSION.session = session_module.Session(
config=get_default_session_config())
session = _SESSION.session
return session
@keras_export(v1=['keras.backend.get_session'])
def get_session(op_input_list=()):
"""Returns the TF session to be used by the backend.
If a default TensorFlow session is available, we will return it.
Else, we will return the global Keras session assuming it matches
the current graph.
If no global Keras session exists at this point:
we will create a new global session.
Note that you can manually set the global session
via `K.set_session(sess)`.
Arguments:
op_input_list: An option sequence of tensors or ops, which will be used
to determine the current graph. Otherwise the default graph will be
used.
Returns:
A TensorFlow session.
"""
session = _get_session(op_input_list)
if not _MANUAL_VAR_INIT:
with session.graph.as_default():
_initialize_variables(session)
return session
# Inject the get_session function to tracking_util to avoid the backward
# dependency from TF to Keras.
tracking_util.register_session_provider(get_session)
def get_graph():
if context.executing_eagerly():
global _GRAPH
if not getattr(_GRAPH, 'graph', None):
_GRAPH.graph = func_graph.FuncGraph('keras_graph')
return _GRAPH.graph
else:
return ops.get_default_graph()
@tf_contextlib.contextmanager
def _scratch_graph(graph=None):
"""Retrieve a shared and temporary func graph.
The eager execution path lifts a subgraph from the keras global graph into
a scratch graph in order to create a function. DistributionStrategies, in
turn, constructs multiple functions as well as a final combined function. In
order for that logic to work correctly, all of the functions need to be
created on the same scratch FuncGraph.
Args:
graph: A graph to be used as the current scratch graph. If not set then
a scratch graph will either be retrieved or created:
Yields:
The current scratch graph.
"""
global _CURRENT_SCRATCH_GRAPH
scratch_graph = getattr(_CURRENT_SCRATCH_GRAPH, 'graph', None)
# If scratch graph and `graph` are both configured, they must match.
if (scratch_graph is not None and graph is not None and
scratch_graph is not graph):
raise ValueError('Multiple scratch graphs specified.')
if scratch_graph:
yield scratch_graph
return
graph = graph or func_graph.FuncGraph('keras_scratch_graph')
try:
_CURRENT_SCRATCH_GRAPH.graph = graph
yield graph
finally:
_CURRENT_SCRATCH_GRAPH.graph = None
@keras_export(v1=['keras.backend.set_session'])
def set_session(session):
"""Sets the global TensorFlow session.
Arguments:
session: A TF Session.
"""
global _SESSION
_SESSION.session = session
def get_default_session_config():
if os.environ.get('OMP_NUM_THREADS'):
logging.warning(
'OMP_NUM_THREADS is no longer used by the default Keras config. '
'To configure the number of threads, use tf.config.threading APIs.')
config = context.context().config
config.allow_soft_placement = True
return config
def get_default_graph_uid_map():
graph = ops.get_default_graph()
name_uid_map = PER_GRAPH_OBJECT_NAME_UIDS.get(graph, None)
if name_uid_map is None:
name_uid_map = collections.defaultdict(int)
PER_GRAPH_OBJECT_NAME_UIDS[graph] = name_uid_map
return name_uid_map
# DEVICE MANIPULATION
class _TfDeviceCaptureOp(object):
"""Class for capturing the TF device scope."""
def __init__(self):
self.device = None
def _set_device(self, device):
"""This method captures TF's explicit device scope setting."""
if tfdev.is_device_spec(device):
device = device.to_string()
self.device = device
def _set_device_from_string(self, device_str):
self.device = device_str
def _get_current_tf_device():
"""Return explicit device of current context, otherwise returns `None`.
Returns:
If the current device scope is explicitly set, it returns a string with
the device (`CPU` or `GPU`). If the scope is not explicitly set, it will
return `None`.
"""
graph = get_graph()
op = _TfDeviceCaptureOp()
graph._apply_device_functions(op)
return tfdev.DeviceSpec.from_string(op.device)
def _is_current_explicit_device(device_type):
"""Check if the current device is explicitly set on the device type specified.
Arguments:
device_type: A string containing `GPU` or `CPU` (case-insensitive).
Returns:
A boolean indicating if the current device scope is explicitly set on the
device type.
Raises:
ValueError: If the `device_type` string indicates an unsupported device.
"""
device_type = device_type.upper()
if device_type not in ['CPU', 'GPU']:
raise ValueError('`device_type` should be either "CPU" or "GPU".')
device = _get_current_tf_device()
return device is not None and device.device_type == device_type.upper()
def _get_available_gpus():
"""Get a list of available gpu devices (formatted as strings).
Returns:
A list of available GPU devices.
"""
if ops.executing_eagerly_outside_functions():
# Returns names of devices directly.
return [d.name for d in config.list_logical_devices('GPU')]
global _LOCAL_DEVICES
if _LOCAL_DEVICES is None:
_LOCAL_DEVICES = get_session().list_devices()
return [x.name for x in _LOCAL_DEVICES if x.device_type == 'GPU']
def _has_nchw_support():
"""Check whether the current scope supports NCHW ops.
TensorFlow does not support NCHW on CPU. Therefore we check if we are not
explicitly put on
CPU, and have GPUs available. In this case there will be soft-placing on the
GPU device.
Returns:
bool: if the current scope device placement would support nchw
"""
explicitly_on_cpu = _is_current_explicit_device('CPU')
gpus_available = bool(_get_available_gpus())
return not explicitly_on_cpu and gpus_available
# VARIABLE MANIPULATION
def _constant_to_tensor(x, dtype):
"""Convert the input `x` to a tensor of type `dtype`.
This is slightly faster than the _to_tensor function, at the cost of
handling fewer cases.
Arguments:
x: An object to be converted (numpy arrays, floats, ints and lists of
them).
dtype: The destination type.
Returns:
A tensor.
"""
return constant_op.constant(x, dtype=dtype)
def _to_tensor(x, dtype):
"""Convert the input `x` to a tensor of type `dtype`.
Arguments:
x: An object to be converted (numpy array, list, tensors).
dtype: The destination type.
Returns:
A tensor.
"""
return ops.convert_to_tensor_v2(x, dtype=dtype)
@keras_export('keras.backend.is_sparse')
def is_sparse(tensor):
"""Returns whether a tensor is a sparse tensor.
Arguments:
tensor: A tensor instance.
Returns:
A boolean.
Example:
>>> a = tf.keras.backend.placeholder((2, 2), sparse=False)
>>> print(tf.keras.backend.is_sparse(a))
False
>>> b = tf.keras.backend.placeholder((2, 2), sparse=True)
>>> print(tf.keras.backend.is_sparse(b))
True
"""
return isinstance(tensor, sparse_tensor.SparseTensor)
@keras_export('keras.backend.to_dense')
@dispatch.add_dispatch_support
def to_dense(tensor):
"""Converts a sparse tensor into a dense tensor and returns it.
Arguments:
tensor: A tensor instance (potentially sparse).
Returns:
A dense tensor.
Examples:
>>> b = tf.keras.backend.placeholder((2, 2), sparse=True)
>>> print(tf.keras.backend.is_sparse(b))
True
>>> c = tf.keras.backend.to_dense(b)
>>> print(tf.keras.backend.is_sparse(c))
False
"""
if is_sparse(tensor):
return sparse_ops.sparse_tensor_to_dense(tensor)
else:
return tensor
@keras_export('keras.backend.name_scope', v1=[])
def name_scope(name):
"""A context manager for use when defining a Python op.
This context manager pushes a name scope, which will make the name of all
operations added within it have a prefix.
For example, to define a new Python op called `my_op`:
def my_op(a):
with tf.name_scope("MyOp") as scope:
a = tf.convert_to_tensor(a, name="a")
# Define some computation that uses `a`.
return foo_op(..., name=scope)
When executed, the Tensor `a` will have the name `MyOp/a`.
Args:
name: The prefix to use on all names created within the name scope.
Returns:
Name scope context manager.
"""
return ops.name_scope_v2(name)
# Export V1 version.
keras_export(v1=['keras.backend.name_scope'])(ops.name_scope_v1)
@keras_export('keras.backend.variable')
def variable(value, dtype=None, name=None, constraint=None):
"""Instantiates a variable and returns it.
Arguments:
value: Numpy array, initial value of the tensor.
dtype: Tensor type.
name: Optional name string for the tensor.
constraint: Optional projection function to be
applied to the variable after an optimizer update.
Returns:
A variable instance (with Keras metadata included).
Examples:
>>> val = np.array([[1, 2], [3, 4]])
>>> kvar = tf.keras.backend.variable(value=val, dtype='float64',
... name='example_var')
>>> tf.keras.backend.dtype(kvar)
'float64'
>>> print(kvar)
<tf.Variable 'example_var:...' shape=(2, 2) dtype=float64, numpy=
array([[1., 2.],
[3., 4.]])>
"""
if dtype is None:
dtype = floatx()
if hasattr(value, 'tocoo'):
sparse_coo = value.tocoo()
indices = np.concatenate((np.expand_dims(sparse_coo.row, 1), np.expand_dims(
sparse_coo.col, 1)), 1)
v = sparse_tensor.SparseTensor(
indices=indices, values=sparse_coo.data, dense_shape=sparse_coo.shape)
v._keras_shape = sparse_coo.shape
return v
v = variables_module.Variable(
value,
dtype=dtypes_module.as_dtype(dtype),
name=name,
constraint=constraint)
if isinstance(value, np.ndarray):
v._keras_shape = value.shape
elif hasattr(value, 'shape'):
v._keras_shape = int_shape(value)
track_variable(v)
return v
def track_tf_optimizer(tf_optimizer):
"""Tracks the given TF optimizer for initialization of its variables."""
if context.executing_eagerly():
return
optimizers = _GRAPH_TF_OPTIMIZERS[None]
optimizers.add(tf_optimizer)
def track_variable(v):
"""Tracks the given variable for initialization."""
if context.executing_eagerly():
return
graph = v.graph if hasattr(v, 'graph') else get_graph()
_GRAPH_VARIABLES[graph].add(v)
def unique_object_name(name,
name_uid_map=None,
avoid_names=None,
namespace='',
zero_based=False):
"""Makes a object name (or arbitrary string) unique within a TensorFlow graph.
Arguments:
name: String name to make unique.
name_uid_map: An optional defaultdict(int) to use when creating unique
names. If None (default), uses a per-Graph dictionary.
avoid_names: An optional set or dict with names which should not be used. If
None (default) does not avoid any names.
namespace: Gets a name which is unique within the (graph, namespace). Layers
which are not Networks use a blank namespace and so get graph-global
names.
zero_based: If True, name sequences start with no suffix (e.g. "dense",
"dense_1"). If False, naming is one-based ("dense_1", "dense_2").
Returns:
Unique string name.
Example:
unique_object_name('dense') # dense_1
unique_object_name('dense') # dense_2
"""
if name_uid_map is None:
name_uid_map = get_default_graph_uid_map()
if avoid_names is None:
avoid_names = set()
proposed_name = None
while proposed_name is None or proposed_name in avoid_names:
name_key = (namespace, name)
if zero_based:
number = name_uid_map[name_key]
if number:
proposed_name = name + '_' + str(number)
else:
proposed_name = name
name_uid_map[name_key] += 1
else:
name_uid_map[name_key] += 1
proposed_name = name + '_' + str(name_uid_map[name_key])
return proposed_name
def _get_variables(graph=None):
"""Returns variables corresponding to the given graph for initialization."""
assert not context.executing_eagerly()
variables = _GRAPH_VARIABLES[graph]
for opt in _GRAPH_TF_OPTIMIZERS[graph]:
variables.update(opt.optimizer.variables())
return variables
def _initialize_variables(session):
"""Utility to initialize uninitialized variables on the fly."""
variables = _get_variables(get_graph())
candidate_vars = []
for v in variables:
if not getattr(v, '_keras_initialized', False):
candidate_vars.append(v)
if candidate_vars:
# This step is expensive, so we only run it on variables not already
# marked as initialized.
is_initialized = session.run(
[variables_module.is_variable_initialized(v) for v in candidate_vars])
# TODO(kathywu): Some metric variables loaded from SavedModel are never
# actually used, and do not have an initializer.
should_be_initialized = [
(not is_initialized[n]) and v.initializer is not None
for n, v in enumerate(candidate_vars)]
uninitialized_vars = []
for flag, v in zip(should_be_initialized, candidate_vars):
if flag:
uninitialized_vars.append(v)
v._keras_initialized = True
if uninitialized_vars:
session.run(variables_module.variables_initializer(uninitialized_vars))
@keras_export('keras.backend.constant')
@dispatch.add_dispatch_support
def constant(value, dtype=None, shape=None, name=None):
"""Creates a constant tensor.
Arguments:
value: A constant value (or list)
dtype: The type of the elements of the resulting tensor.
shape: Optional dimensions of resulting tensor.
name: Optional name for the tensor.
Returns:
A Constant Tensor.
"""
if dtype is None:
dtype = floatx()
return constant_op.constant(value, dtype=dtype, shape=shape, name=name)
@keras_export('keras.backend.is_keras_tensor')
def is_keras_tensor(x):
"""Returns whether `x` is a Keras tensor.
A "Keras tensor" is a tensor that was returned by a Keras layer,
(`Layer` class) or by `Input`.
Arguments:
x: A candidate tensor.
Returns:
A boolean: Whether the argument is a Keras tensor.
Raises:
ValueError: In case `x` is not a symbolic tensor.
Examples:
>>> np_var = np.array([1, 2])
>>> # A numpy array is not a symbolic tensor.
>>> tf.keras.backend.is_keras_tensor(np_var)
Traceback (most recent call last):
...
ValueError: Unexpectedly found an instance of type `<class 'numpy.ndarray'>`.
Expected a symbolic tensor instance.
>>> keras_var = tf.keras.backend.variable(np_var)
>>> # A variable created with the keras backend is not a Keras tensor.
>>> tf.keras.backend.is_keras_tensor(keras_var)
False
>>> keras_placeholder = tf.keras.backend.placeholder(shape=(2, 4, 5))
>>> # A placeholder is a Keras tensor.
>>> tf.keras.backend.is_keras_tensor(keras_placeholder)
True
>>> keras_input = tf.keras.layers.Input([10])
>>> # An Input is a Keras tensor.
>>> tf.keras.backend.is_keras_tensor(keras_input)
True
>>> keras_layer_output = tf.keras.layers.Dense(10)(keras_input)
>>> # Any Keras layer output is a Keras tensor.
>>> tf.keras.backend.is_keras_tensor(keras_layer_output)
True
"""
if keras_tensor.keras_tensors_enabled():
return isinstance(x, keras_tensor.KerasTensor)
if not isinstance(x,
(ops.Tensor, variables_module.Variable,
sparse_tensor.SparseTensor, ragged_tensor.RaggedTensor)):
raise ValueError('Unexpectedly found an instance of type `' + str(type(x)) +
'`. Expected a symbolic tensor instance.')
return hasattr(x, '_keras_history')
@keras_export('keras.backend.placeholder')
def placeholder(shape=None,
ndim=None,
dtype=None,
sparse=False,
name=None,
ragged=False):
"""Instantiates a placeholder tensor and returns it.
Arguments:
shape: Shape of the placeholder
(integer tuple, may include `None` entries).
ndim: Number of axes of the tensor.
At least one of {`shape`, `ndim`} must be specified.
If both are specified, `shape` is used.
dtype: Placeholder type.
sparse: Boolean, whether the placeholder should have a sparse type.
name: Optional name string for the placeholder.
ragged: Boolean, whether the placeholder should have a ragged type.
In this case, values of 'None' in the 'shape' argument represent
ragged dimensions. For more information about RaggedTensors, see this
[guide](https://www.tensorflow.org/guide/ragged_tensors).
Raises:
ValueError: If called with eager execution
ValueError: If called with sparse = True and ragged = True.
Returns:
Tensor instance (with Keras metadata included).
Examples:
>>> input_ph = tf.keras.backend.placeholder(shape=(2, 4, 5))
>>> input_ph
<tf.Tensor 'Placeholder_...' shape=(2, 4, 5) dtype=float32>
"""
if sparse and ragged:
raise ValueError(
'Cannot set both sparse and ragged to True when creating a placeholder.'
)
if dtype is None:
dtype = floatx()
if not shape:
if ndim:
shape = (None,) * ndim
if keras_tensor.keras_tensors_enabled():
spec = tensor_spec.TensorSpec(
shape=shape, dtype=dtype, name=name)
if sparse:
spec = sparse_tensor.SparseTensorSpec(
shape=shape, dtype=dtype)
elif ragged:
ragged_rank = 0
for i in range(1, len(shape)):
# Hacky because could be tensorshape or tuple maybe?
# Or just tensorshape?
if shape[i] is None or (
hasattr(shape[i], 'value') and
shape[i].value is None):
ragged_rank = i
spec = ragged_tensor.RaggedTensorSpec(
shape=shape, dtype=dtype, ragged_rank=ragged_rank)
x = keras_tensor.KerasTensor(spec, name=name)
else:
with get_graph().as_default():
if sparse:
x = array_ops.sparse_placeholder(dtype, shape=shape, name=name)
elif ragged:
ragged_rank = 0
for i in range(1, len(shape)):
if shape[i] is None:
ragged_rank = i
type_spec = ragged_tensor.RaggedTensorSpec(
shape=shape, dtype=dtype, ragged_rank=ragged_rank)
def tensor_spec_to_placeholder(tensorspec):
return array_ops.placeholder(tensorspec.dtype, tensorspec.shape)
x = nest.map_structure(tensor_spec_to_placeholder, type_spec,
expand_composites=True)
else:
x = array_ops.placeholder(dtype, shape=shape, name=name)
if context.executing_eagerly():
# Add keras_history connectivity information to the placeholder
# when the placeholder is built in a top-level eager context
# (intended to be used with keras.backend.function)
from tensorflow.python.keras.engine import input_layer # pylint: disable=g-import-not-at-top
x = input_layer.Input(tensor=x)
if keras_tensor.keras_tensors_enabled():
x._is_backend_placeholder = True
return x
def is_placeholder(x):
"""Returns whether `x` is a placeholder.
Arguments:
x: A candidate placeholder.
Returns:
Boolean.
"""
try:
if keras_tensor.keras_tensors_enabled():
return hasattr(x, '_is_backend_placeholder')
if isinstance(x, composite_tensor.CompositeTensor):
flat_components = nest.flatten(x, expand_composites=True)
return py_any(is_placeholder(c) for c in flat_components)
else:
return x.op.type == 'Placeholder'
except AttributeError:
return False
@keras_export('keras.backend.shape')
@dispatch.add_dispatch_support
def shape(x):
"""Returns the symbolic shape of a tensor or variable.
Arguments:
x: A tensor or variable.
Returns:
A symbolic shape (which is itself a tensor).
Examples:
>>> val = np.array([[1, 2], [3, 4]])
>>> kvar = tf.keras.backend.variable(value=val)
>>> tf.keras.backend.shape(kvar)
<tf.Tensor: shape=(2,), dtype=int32, numpy=array([2, 2], dtype=int32)>
>>> input = tf.keras.backend.placeholder(shape=(2, 4, 5))
>>> tf.keras.backend.shape(input)
<tf.Tensor 'Shape_...' shape=(3,) dtype=int32>
"""
return array_ops.shape(x)
@keras_export('keras.backend.int_shape')
def int_shape(x):
"""Returns the shape of tensor or variable as a tuple of int or None entries.
Arguments:
x: Tensor or variable.
Returns:
A tuple of integers (or None entries).
Examples:
>>> input = tf.keras.backend.placeholder(shape=(2, 4, 5))
>>> tf.keras.backend.int_shape(input)
(2, 4, 5)
>>> val = np.array([[1, 2], [3, 4]])
>>> kvar = tf.keras.backend.variable(value=val)
>>> tf.keras.backend.int_shape(kvar)
(2, 2)
"""
try:
shape = x.shape
if not isinstance(shape, tuple):
shape = tuple(shape.as_list())
return shape
except ValueError:
return None
@keras_export('keras.backend.ndim')
def ndim(x):
"""Returns the number of axes in a tensor, as an integer.
Arguments:
x: Tensor or variable.
Returns:
Integer (scalar), number of axes.
Examples:
>>> input = tf.keras.backend.placeholder(shape=(2, 4, 5))
>>> val = np.array([[1, 2], [3, 4]])
>>> kvar = tf.keras.backend.variable(value=val)
>>> tf.keras.backend.ndim(input)
3
>>> tf.keras.backend.ndim(kvar)
2
"""
dims = x.shape._dims
if dims is not None:
return len(dims)
return None
@keras_export('keras.backend.dtype')
@dispatch.add_dispatch_support
def dtype(x):
"""Returns the dtype of a Keras tensor or variable, as a string.
Arguments:
x: Tensor or variable.
Returns:
String, dtype of `x`.
Examples:
>>> tf.keras.backend.dtype(tf.keras.backend.placeholder(shape=(2,4,5)))
'float32'
>>> tf.keras.backend.dtype(tf.keras.backend.placeholder(shape=(2,4,5),
... dtype='float32'))
'float32'
>>> tf.keras.backend.dtype(tf.keras.backend.placeholder(shape=(2,4,5),
... dtype='float64'))
'float64'
>>> kvar = tf.keras.backend.variable(np.array([[1, 2], [3, 4]]))
>>> tf.keras.backend.dtype(kvar)
'float32'
>>> kvar = tf.keras.backend.variable(np.array([[1, 2], [3, 4]]),
... dtype='float32')
>>> tf.keras.backend.dtype(kvar)
'float32'
"""
return x.dtype.base_dtype.name
@keras_export('keras.backend.eval')
def eval(x):
"""Evaluates the value of a variable.
Arguments:
x: A variable.
Returns:
A Numpy array.
Examples:
>>> kvar = tf.keras.backend.variable(np.array([[1, 2], [3, 4]]),
... dtype='float32')
>>> tf.keras.backend.eval(kvar)
array([[1., 2.],
[3., 4.]], dtype=float32)
"""
return get_value(to_dense(x))
@keras_export('keras.backend.zeros')
def zeros(shape, dtype=None, name=None):
"""Instantiates an all-zeros variable and returns it.
Arguments:
shape: Tuple or list of integers, shape of returned Keras variable
dtype: data type of returned Keras variable
name: name of returned Keras variable
Returns:
A variable (including Keras metadata), filled with `0.0`.
Note that if `shape` was symbolic, we cannot return a variable,
and will return a dynamically-shaped tensor instead.
Example:
>>> kvar = tf.keras.backend.zeros((3,4))
>>> tf.keras.backend.eval(kvar)
array([[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]], dtype=float32)
>>> A = tf.constant([1,2,3])
>>> kvar2 = tf.keras.backend.zeros(A.shape) # [0., 0., 0.]
>>> tf.keras.backend.eval(kvar2)
array([0., 0., 0.], dtype=float32)
>>> kvar3 = tf.keras.backend.zeros(A.shape,dtype=tf.int32)
>>> tf.keras.backend.eval(kvar3)
array([0, 0, 0], dtype=int32)
>>> kvar4 = tf.keras.backend.zeros([2,3])
>>> tf.keras.backend.eval(kvar4)
array([[0., 0., 0.],
[0., 0., 0.]], dtype=float32)
"""
with ops.init_scope():
if dtype is None:
dtype = floatx()
tf_dtype = dtypes_module.as_dtype(dtype)
v = array_ops.zeros(shape=shape, dtype=tf_dtype, name=name)
if py_all(v.shape.as_list()):
return variable(v, dtype=dtype, name=name)
return v
@keras_export('keras.backend.ones')
@dispatch.add_dispatch_support
def ones(shape, dtype=None, name=None):
"""Instantiates an all-ones variable and returns it.
Arguments:
shape: Tuple of integers, shape of returned Keras variable.
dtype: String, data type of returned Keras variable.
name: String, name of returned Keras variable.
Returns:
A Keras variable, filled with `1.0`.
Note that if `shape` was symbolic, we cannot return a variable,
and will return a dynamically-shaped tensor instead.
Example:
>>> kvar = tf.keras.backend.ones((3,4))
>>> tf.keras.backend.eval(kvar)
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]], dtype=float32)
"""
with ops.init_scope():
if dtype is None:
dtype = floatx()
tf_dtype = dtypes_module.as_dtype(dtype)
v = array_ops.ones(shape=shape, dtype=tf_dtype, name=name)
if py_all(v.shape.as_list()):
return variable(v, dtype=dtype, name=name)
return v
@keras_export('keras.backend.eye')
@dispatch.add_dispatch_support
def eye(size, dtype=None, name=None):
"""Instantiate an identity matrix and returns it.
Arguments:
size: Integer, number of rows/columns.
dtype: String, data type of returned Keras variable.
name: String, name of returned Keras variable.
Returns:
A Keras variable, an identity matrix.
Example:
>>> kvar = tf.keras.backend.eye(3)
>>> tf.keras.backend.eval(kvar)
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]], dtype=float32)
"""
if dtype is None:
dtype = floatx()
tf_dtype = dtypes_module.as_dtype(dtype)
return variable(linalg_ops.eye(size, dtype=tf_dtype), dtype, name)
@keras_export('keras.backend.zeros_like')
def zeros_like(x, dtype=None, name=None):
"""Instantiates an all-zeros variable of the same shape as another tensor.
Arguments:
x: Keras variable or Keras tensor.
dtype: dtype of returned Keras variable.
`None` uses the dtype of `x`.
name: name for the variable to create.
Returns:
A Keras variable with the shape of `x` filled with zeros.
Example:
from tensorflow.keras import backend as K
kvar = K.variable(np.random.random((2,3)))
kvar_zeros = K.zeros_like(kvar)
K.eval(kvar_zeros)
# array([[ 0., 0., 0.], [ 0., 0., 0.]], dtype=float32)
"""
return array_ops.zeros_like(x, dtype=dtype, name=name)
@keras_export('keras.backend.ones_like')
@dispatch.add_dispatch_support
def ones_like(x, dtype=None, name=None):
"""Instantiates an all-ones variable of the same shape as another tensor.
Arguments:
x: Keras variable or tensor.
dtype: String, dtype of returned Keras variable.
None uses the dtype of x.
name: String, name for the variable to create.
Returns:
A Keras variable with the shape of x filled with ones.
Example:
>>> kvar = tf.keras.backend.variable(np.random.random((2,3)))
>>> kvar_ones = tf.keras.backend.ones_like(kvar)
>>> tf.keras.backend.eval(kvar_ones)
array([[1., 1., 1.],
[1., 1., 1.]], dtype=float32)
"""
return array_ops.ones_like(x, dtype=dtype, name=name)
def identity(x, name=None):
"""Returns a tensor with the same content as the input tensor.
Arguments:
x: The input tensor.
name: String, name for the variable to create.
Returns:
A tensor of the same shape, type and content.
"""
return array_ops.identity(x, name=name)
@keras_export('keras.backend.random_uniform_variable')
def random_uniform_variable(shape, low, high, dtype=None, name=None, seed=None):
"""Instantiates a variable with values drawn from a uniform distribution.
Arguments:
shape: Tuple of integers, shape of returned Keras variable.
low: Float, lower boundary of the output interval.
high: Float, upper boundary of the output interval.
dtype: String, dtype of returned Keras variable.
name: String, name of returned Keras variable.
seed: Integer, random seed.
Returns:
A Keras variable, filled with drawn samples.
Example:
>>> kvar = tf.keras.backend.random_uniform_variable(shape=(2,3),
... low=0.0, high=1.0)
>>> kvar
<tf.Variable 'Variable:0' shape=(2, 3) dtype=float32, numpy=...,
dtype=float32)>
"""
if dtype is None:
dtype = floatx()
tf_dtype = dtypes_module.as_dtype(dtype)
if seed is None:
# ensure that randomness is conditioned by the Numpy RNG
seed = np.random.randint(10e8)
value = init_ops.random_uniform_initializer(
low, high, dtype=tf_dtype, seed=seed)(shape)
return variable(value, dtype=dtype, name=name)
@keras_export('keras.backend.random_normal_variable')
def random_normal_variable(shape, mean, scale, dtype=None, name=None,
seed=None):
"""Instantiates a variable with values drawn from a normal distribution.
Arguments:
shape: Tuple of integers, shape of returned Keras variable.
mean: Float, mean of the normal distribution.
scale: Float, standard deviation of the normal distribution.
dtype: String, dtype of returned Keras variable.
name: String, name of returned Keras variable.
seed: Integer, random seed.
Returns:
A Keras variable, filled with drawn samples.
Example:
>>> kvar = tf.keras.backend.random_normal_variable(shape=(2,3),
... mean=0.0, scale=1.0)
>>> kvar
<tf.Variable 'Variable:0' shape=(2, 3) dtype=float32, numpy=...,
dtype=float32)>
"""
if dtype is None:
dtype = floatx()
tf_dtype = dtypes_module.as_dtype(dtype)
if seed is None:
# ensure that randomness is conditioned by the Numpy RNG
seed = np.random.randint(10e8)
value = init_ops.random_normal_initializer(
mean, scale, dtype=tf_dtype, seed=seed)(shape)
return variable(value, dtype=dtype, name=name)
@keras_export('keras.backend.count_params')
def count_params(x):
"""Returns the static number of elements in a variable or tensor.
Arguments:
x: Variable or tensor.
Returns:
Integer, the number of scalars in `x`.
Example:
>>> kvar = tf.keras.backend.zeros((2,3))
>>> tf.keras.backend.count_params(kvar)
6
>>> tf.keras.backend.eval(kvar)
array([[0., 0., 0.],
[0., 0., 0.]], dtype=float32)
"""
return np.prod(x.shape.as_list())
@keras_export('keras.backend.cast')
@dispatch.add_dispatch_support
def cast(x, dtype):
"""Casts a tensor to a different dtype and returns it.
You can cast a Keras variable but it still returns a Keras tensor.
Arguments:
x: Keras tensor (or variable).
dtype: String, either (`'float16'`, `'float32'`, or `'float64'`).
Returns:
Keras tensor with dtype `dtype`.
Examples:
Cast a float32 variable to a float64 tensor
>>> input = tf.keras.backend.ones(shape=(1,3))
>>> print(input)
<tf.Variable 'Variable:0' shape=(1, 3) dtype=float32,
numpy=array([[1., 1., 1.]], dtype=float32)>
>>> cast_input = tf.keras.backend.cast(input, dtype='float64')
>>> print(cast_input)
tf.Tensor([[1. 1. 1.]], shape=(1, 3), dtype=float64)
"""
return math_ops.cast(x, dtype)
# UPDATES OPS
@keras_export('keras.backend.update')
def update(x, new_x):
return state_ops.assign(x, new_x)
@keras_export('keras.backend.update_add')
def update_add(x, increment):
"""Update the value of `x` by adding `increment`.
Arguments:
x: A Variable.
increment: A tensor of same shape as `x`.
Returns:
The variable `x` updated.
"""
return state_ops.assign_add(x, increment)
@keras_export('keras.backend.update_sub')
def update_sub(x, decrement):
"""Update the value of `x` by subtracting `decrement`.
Arguments:
x: A Variable.
decrement: A tensor of same shape as `x`.
Returns:
The variable `x` updated.
"""
return state_ops.assign_sub(x, decrement)
@keras_export('keras.backend.moving_average_update')
def moving_average_update(x, value, momentum):
"""Compute the exponential moving average of a value.
The moving average 'x' is updated with 'value' following:
```
x = x * momentum + value * (1 - momentum)
```
For example:
>>> x = tf.Variable(0.0)
>>> momentum=0.9
>>> moving_average_update(x, value = 2.0, momentum=momentum).numpy()
>>> x.numpy()
0.2
The result will be biased towards the initial value of the variable.
If the variable was initialized to zero, you can divide by
`1 - momentum ** num_updates` to debias it (Section 3 of
[Kingma et al., 2015](https://arxiv.org/abs/1412.6980)):
>>> num_updates = 1.0
>>> x_zdb = x/(1 - momentum**num_updates)
>>> x_zdb.numpy()
2.0
Arguments:
x: A Variable, the moving average.
value: A tensor with the same shape as `x`, the new value to be
averaged in.
momentum: The moving average momentum.
Returns:
The updated variable.
"""
zero_debias = not tf2.enabled()
return moving_averages.assign_moving_average(
x, value, momentum, zero_debias=zero_debias)
# LINEAR ALGEBRA
@keras_export('keras.backend.dot')
@dispatch.add_dispatch_support
def dot(x, y):
"""Multiplies 2 tensors (and/or variables) and returns a tensor.
Arguments:
x: Tensor or variable.
y: Tensor or variable.
Returns:
A tensor, dot product of `x` and `y`.
Examples:
>>> x = tf.keras.backend.placeholder(shape=(2, 3))
>>> y = tf.keras.backend.placeholder(shape=(3, 4))
>>> xy = tf.keras.backend.dot(x, y)
>>> xy
<tf.Tensor ... shape=(2, 4) dtype=float32>
>>> x = tf.keras.backend.placeholder(shape=(32, 28, 3))
>>> y = tf.keras.backend.placeholder(shape=(3, 4))
>>> xy = tf.keras.backend.dot(x, y)
>>> xy
<tf.Tensor ... shape=(32, 28, 4) dtype=float32>
>>> x = tf.keras.backend.random_uniform_variable(shape=(2, 3), low=0, high=1)
>>> y = tf.keras.backend.ones((4, 3, 5))
>>> xy = tf.keras.backend.dot(x, y)
>>> tf.keras.backend.int_shape(xy)
(2, 4, 5)
"""
if ndim(x) is not None and (ndim(x) > 2 or ndim(y) > 2):
x_shape = []
for i, s in zip(int_shape(x), array_ops.unstack(array_ops.shape(x))):
if i is not None:
x_shape.append(i)
else:
x_shape.append(s)
x_shape = tuple(x_shape)
y_shape = []
for i, s in zip(int_shape(y), array_ops.unstack(array_ops.shape(y))):
if i is not None:
y_shape.append(i)
else:
y_shape.append(s)
y_shape = tuple(y_shape)
y_permute_dim = list(range(ndim(y)))
y_permute_dim = [y_permute_dim.pop(-2)] + y_permute_dim
xt = array_ops.reshape(x, [-1, x_shape[-1]])
yt = array_ops.reshape(
array_ops.transpose(y, perm=y_permute_dim), [y_shape[-2], -1])
return array_ops.reshape(
math_ops.matmul(xt, yt), x_shape[:-1] + y_shape[:-2] + y_shape[-1:])
if is_sparse(x):
out = sparse_ops.sparse_tensor_dense_matmul(x, y)
else:
out = math_ops.matmul(x, y)
return out
@keras_export('keras.backend.batch_dot')
@dispatch.add_dispatch_support
def batch_dot(x, y, axes=None):
"""Batchwise dot product.
`batch_dot` is used to compute dot product of `x` and `y` when
`x` and `y` are data in batch, i.e. in a shape of
`(batch_size, :)`.
`batch_dot` results in a tensor or variable with less dimensions
than the input. If the number of dimensions is reduced to 1,
we use `expand_dims` to make sure that ndim is at least 2.
Arguments:
x: Keras tensor or variable with `ndim >= 2`.
y: Keras tensor or variable with `ndim >= 2`.
axes: Tuple or list of integers with target dimensions, or single integer.
The sizes of `x.shape[axes[0]]` and `y.shape[axes[1]]` should be equal.
Returns:
A tensor with shape equal to the concatenation of `x`'s shape
(less the dimension that was summed over) and `y`'s shape
(less the batch dimension and the dimension that was summed over).
If the final rank is 1, we reshape it to `(batch_size, 1)`.
Examples:
>>> x_batch = tf.keras.backend.ones(shape=(32, 20, 1))
>>> y_batch = tf.keras.backend.ones(shape=(32, 30, 20))
>>> xy_batch_dot = tf.keras.backend.batch_dot(x_batch, y_batch, axes=(1, 2))
>>> tf.keras.backend.int_shape(xy_batch_dot)
(32, 1, 30)
Shape inference:
Let `x`'s shape be `(100, 20)` and `y`'s shape be `(100, 30, 20)`.
If `axes` is (1, 2), to find the output shape of resultant tensor,
loop through each dimension in `x`'s shape and `y`'s shape:
* `x.shape[0]` : 100 : append to output shape
* `x.shape[1]` : 20 : do not append to output shape,
dimension 1 of `x` has been summed over. (`dot_axes[0]` = 1)
* `y.shape[0]` : 100 : do not append to output shape,
always ignore first dimension of `y`
* `y.shape[1]` : 30 : append to output shape
* `y.shape[2]` : 20 : do not append to output shape,
dimension 2 of `y` has been summed over. (`dot_axes[1]` = 2)
`output_shape` = `(100, 30)`
"""
x_shape = int_shape(x)
y_shape = int_shape(y)
x_ndim = len(x_shape)
y_ndim = len(y_shape)
if x_ndim < 2 or y_ndim < 2:
raise ValueError('Cannot do batch_dot on inputs '
'with rank < 2. '
'Received inputs with shapes ' +
str(x_shape) + ' and ' +
str(y_shape) + '.')
x_batch_size = x_shape[0]
y_batch_size = y_shape[0]
if x_batch_size is not None and y_batch_size is not None:
if x_batch_size != y_batch_size:
raise ValueError('Cannot do batch_dot on inputs '
'with different batch sizes. '
'Received inputs with shapes ' +
str(x_shape) + ' and ' +
str(y_shape) + '.')
if isinstance(axes, int):
axes = [axes, axes]
if axes is None:
if y_ndim == 2:
axes = [x_ndim - 1, y_ndim - 1]
else:
axes = [x_ndim - 1, y_ndim - 2]
if py_any(isinstance(a, (list, tuple)) for a in axes):
raise ValueError('Multiple target dimensions are not supported. ' +
'Expected: None, int, (int, int), ' +
'Provided: ' + str(axes))
# if tuple, convert to list.
axes = list(axes)
# convert negative indices.
if axes[0] < 0:
axes[0] += x_ndim
if axes[1] < 0:
axes[1] += y_ndim
# sanity checks
if 0 in axes:
raise ValueError('Cannot perform batch_dot over axis 0. '
'If your inputs are not batched, '
'add a dummy batch dimension to your '
'inputs using K.expand_dims(x, 0)')
a0, a1 = axes
d1 = x_shape[a0]
d2 = y_shape[a1]
if d1 is not None and d2 is not None and d1 != d2:
raise ValueError('Cannot do batch_dot on inputs with shapes ' +
str(x_shape) + ' and ' + str(y_shape) +
' with axes=' + str(axes) + '. x.shape[%d] != '
'y.shape[%d] (%d != %d).' % (axes[0], axes[1], d1, d2))
# backup ndims. Need them later.
orig_x_ndim = x_ndim
orig_y_ndim = y_ndim
# if rank is 2, expand to 3.
if x_ndim == 2:
x = array_ops.expand_dims(x, 1)
a0 += 1
x_ndim += 1
if y_ndim == 2:
y = array_ops.expand_dims(y, 2)
y_ndim += 1
# bring x's dimension to be reduced to last axis.
if a0 != x_ndim - 1:
pattern = list(range(x_ndim))
for i in range(a0, x_ndim - 1):
pattern[i] = pattern[i + 1]
pattern[-1] = a0
x = array_ops.transpose(x, pattern)
# bring y's dimension to be reduced to axis 1.
if a1 != 1:
pattern = list(range(y_ndim))
for i in range(a1, 1, -1):
pattern[i] = pattern[i - 1]
pattern[1] = a1
y = array_ops.transpose(y, pattern)
# normalize both inputs to rank 3.
if x_ndim > 3:
# squash middle dimensions of x.
x_shape = shape(x)
x_mid_dims = x_shape[1:-1]
x_squashed_shape = array_ops.stack(
[x_shape[0], -1, x_shape[-1]])
x = array_ops.reshape(x, x_squashed_shape)
x_squashed = True
else:
x_squashed = False
if y_ndim > 3:
# squash trailing dimensions of y.
y_shape = shape(y)
y_trail_dims = y_shape[2:]
y_squashed_shape = array_ops.stack(
[y_shape[0], y_shape[1], -1])
y = array_ops.reshape(y, y_squashed_shape)
y_squashed = True
else:
y_squashed = False
result = math_ops.matmul(x, y)
# if inputs were squashed, we have to reshape the matmul output.
output_shape = array_ops.shape(result)
do_reshape = False
if x_squashed:
output_shape = array_ops.concat(
[output_shape[:1],
x_mid_dims,
output_shape[-1:]], 0)
do_reshape = True
if y_squashed:
output_shape = array_ops.concat([output_shape[:-1], y_trail_dims], 0)
do_reshape = True
if do_reshape:
result = array_ops.reshape(result, output_shape)
# if the inputs were originally rank 2, we remove the added 1 dim.
if orig_x_ndim == 2:
result = array_ops.squeeze(result, 1)
elif orig_y_ndim == 2:
result = array_ops.squeeze(result, -1)
return result
@keras_export('keras.backend.transpose')
@dispatch.add_dispatch_support
def transpose(x):
"""Transposes a tensor and returns it.
Arguments:
x: Tensor or variable.
Returns:
A tensor.
Examples:
>>> var = tf.keras.backend.variable([[1, 2, 3], [4, 5, 6]])
>>> tf.keras.backend.eval(var)
array([[1., 2., 3.],
[4., 5., 6.]], dtype=float32)
>>> var_transposed = tf.keras.backend.transpose(var)
>>> tf.keras.backend.eval(var_transposed)
array([[1., 4.],
[2., 5.],
[3., 6.]], dtype=float32)
>>> input = tf.keras.backend.placeholder((2, 3))
>>> input
<tf.Tensor 'Placeholder_...' shape=(2, 3) dtype=float32>
>>> input_transposed = tf.keras.backend.transpose(input)
>>> input_transposed
<tf.Tensor 'Transpose_...' shape=(3, 2) dtype=float32>
"""
return array_ops.transpose(x)
@keras_export('keras.backend.gather')
@dispatch.add_dispatch_support
def gather(reference, indices):
"""Retrieves the elements of indices `indices` in the tensor `reference`.
Arguments:
reference: A tensor.
indices: An integer tensor of indices.
Returns:
A tensor of same type as `reference`.
Examples:
>>> var = tf.keras.backend.variable([[1, 2, 3], [4, 5, 6]])
>>> tf.keras.backend.eval(var)
array([[1., 2., 3.],
[4., 5., 6.]], dtype=float32)
>>> var_gathered = tf.keras.backend.gather(var, [0])
>>> tf.keras.backend.eval(var_gathered)
array([[1., 2., 3.]], dtype=float32)
>>> var_gathered = tf.keras.backend.gather(var, [1])
>>> tf.keras.backend.eval(var_gathered)
array([[4., 5., 6.]], dtype=float32)
>>> var_gathered = tf.keras.backend.gather(var, [0,1,0])
>>> tf.keras.backend.eval(var_gathered)
array([[1., 2., 3.],
[4., 5., 6.],
[1., 2., 3.]], dtype=float32)
"""
return array_ops.gather(reference, indices)
# ELEMENT-WISE OPERATIONS
@keras_export('keras.backend.max')
@dispatch.add_dispatch_support
def max(x, axis=None, keepdims=False):
"""Maximum value in a tensor.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to find maximum values.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`,
the reduced dimension is retained with length 1.
Returns:
A tensor with maximum values of `x`.
"""
return math_ops.reduce_max(x, axis, keepdims)
@keras_export('keras.backend.min')
@dispatch.add_dispatch_support
def min(x, axis=None, keepdims=False):
"""Minimum value in a tensor.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to find minimum values.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`,
the reduced dimension is retained with length 1.
Returns:
A tensor with minimum values of `x`.
"""
return math_ops.reduce_min(x, axis, keepdims)
@keras_export('keras.backend.sum')
@dispatch.add_dispatch_support
def sum(x, axis=None, keepdims=False):
"""Sum of the values in a tensor, alongside the specified axis.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to sum over.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`,
the reduced dimension is retained with length 1.
Returns:
A tensor with sum of `x`.
"""
return math_ops.reduce_sum(x, axis, keepdims)
@keras_export('keras.backend.prod')
@dispatch.add_dispatch_support
def prod(x, axis=None, keepdims=False):
"""Multiplies the values in a tensor, alongside the specified axis.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to compute the product.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`,
the reduced dimension is retained with length 1.
Returns:
A tensor with the product of elements of `x`.
"""
return math_ops.reduce_prod(x, axis, keepdims)
@keras_export('keras.backend.cumsum')
@dispatch.add_dispatch_support
def cumsum(x, axis=0):
"""Cumulative sum of the values in a tensor, alongside the specified axis.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to compute the sum.
Returns:
A tensor of the cumulative sum of values of `x` along `axis`.
"""
return math_ops.cumsum(x, axis=axis)
@keras_export('keras.backend.cumprod')
@dispatch.add_dispatch_support
def cumprod(x, axis=0):
"""Cumulative product of the values in a tensor, alongside the specified axis.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to compute the product.
Returns:
A tensor of the cumulative product of values of `x` along `axis`.
"""
return math_ops.cumprod(x, axis=axis)
@keras_export('keras.backend.var')
def var(x, axis=None, keepdims=False):
"""Variance of a tensor, alongside the specified axis.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to compute the variance.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`,
the reduced dimension is retained with length 1.
Returns:
A tensor with the variance of elements of `x`.
"""
if x.dtype.base_dtype == dtypes_module.bool:
x = math_ops.cast(x, floatx())
return math_ops.reduce_variance(x, axis=axis, keepdims=keepdims)
@keras_export('keras.backend.std')
@dispatch.add_dispatch_support
def std(x, axis=None, keepdims=False):
"""Standard deviation of a tensor, alongside the specified axis.
It is an alias to `tf.math.reduce_std`.
Arguments:
x: A tensor or variable. It should have numerical dtypes. Boolean type
inputs will be converted to float.
axis: An integer, the axis to compute the standard deviation. If `None`
(the default), reduces all dimensions. Must be in the range
`[-rank(x), rank(x))`.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`, the reduced dimension is retained with
length 1.
Returns:
A tensor with the standard deviation of elements of `x` with same dtype.
Boolean type input will be converted to float.
"""
if x.dtype.base_dtype == dtypes_module.bool:
x = math_ops.cast(x, floatx())
return math_ops.reduce_std(x, axis=axis, keepdims=keepdims)
@keras_export('keras.backend.mean')
@dispatch.add_dispatch_support
def mean(x, axis=None, keepdims=False):
"""Mean of a tensor, alongside the specified axis.
Arguments:
x: A tensor or variable.
axis: A list of integer. Axes to compute the mean.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1 for each entry in `axis`. If `keepdims` is `True`,
the reduced dimensions are retained with length 1.
Returns:
A tensor with the mean of elements of `x`.
"""
if x.dtype.base_dtype == dtypes_module.bool:
x = math_ops.cast(x, floatx())
return math_ops.reduce_mean(x, axis, keepdims)
@keras_export('keras.backend.any')
@dispatch.add_dispatch_support
def any(x, axis=None, keepdims=False):
"""Bitwise reduction (logical OR).
Arguments:
x: Tensor or variable.
axis: axis along which to perform the reduction.
keepdims: whether the drop or broadcast the reduction axes.
Returns:
A uint8 tensor (0s and 1s).
"""
x = math_ops.cast(x, dtypes_module.bool)
return math_ops.reduce_any(x, axis, keepdims)
@keras_export('keras.backend.all')
@dispatch.add_dispatch_support
def all(x, axis=None, keepdims=False):
"""Bitwise reduction (logical AND).
Arguments:
x: Tensor or variable.
axis: axis along which to perform the reduction.
keepdims: whether the drop or broadcast the reduction axes.
Returns:
A uint8 tensor (0s and 1s).
"""
x = math_ops.cast(x, dtypes_module.bool)
return math_ops.reduce_all(x, axis, keepdims)
@keras_export('keras.backend.argmax')
@dispatch.add_dispatch_support
def argmax(x, axis=-1):
"""Returns the index of the maximum value along an axis.
Arguments:
x: Tensor or variable.
axis: axis along which to perform the reduction.
Returns:
A tensor.
"""
return math_ops.argmax(x, axis)
@keras_export('keras.backend.argmin')
@dispatch.add_dispatch_support
def argmin(x, axis=-1):
"""Returns the index of the minimum value along an axis.
Arguments:
x: Tensor or variable.
axis: axis along which to perform the reduction.
Returns:
A tensor.
"""
return math_ops.argmin(x, axis)
@keras_export('keras.backend.square')
@dispatch.add_dispatch_support
def square(x):
"""Element-wise square.
Arguments:
x: Tensor or variable.
Returns:
A tensor.
"""
return math_ops.square(x)
@keras_export('keras.backend.abs')
@dispatch.add_dispatch_support
def abs(x):
"""Element-wise absolute value.
Arguments:
x: Tensor or variable.
Returns:
A tensor.
"""
return math_ops.abs(x)
@keras_export('keras.backend.sqrt')
@dispatch.add_dispatch_support
def sqrt(x):
"""Element-wise square root.
Arguments:
x: Tensor or variable.
Returns:
A tensor.
"""
zero = _constant_to_tensor(0., x.dtype.base_dtype)
inf = _constant_to_tensor(np.inf, x.dtype.base_dtype)
x = clip_ops.clip_by_value(x, zero, inf)
return math_ops.sqrt(x)
@keras_export('keras.backend.exp')
@dispatch.add_dispatch_support
def exp(x):
"""Element-wise exponential.
Arguments:
x: Tensor or variable.
Returns:
A tensor.
"""
return math_ops.exp(x)
@keras_export('keras.backend.log')
@dispatch.add_dispatch_support
def log(x):
"""Element-wise log.
Arguments:
x: Tensor or variable.
Returns:
A tensor.
"""
return math_ops.log(x)
def logsumexp(x, axis=None, keepdims=False):
"""Computes log(sum(exp(elements across dimensions of a tensor))).
This function is more numerically stable than log(sum(exp(x))).
It avoids overflows caused by taking the exp of large inputs and
underflows caused by taking the log of small inputs.
Arguments:
x: A tensor or variable.
axis: An integer, the axis to reduce over.
keepdims: A boolean, whether to keep the dimensions or not.
If `keepdims` is `False`, the rank of the tensor is reduced
by 1. If `keepdims` is `True`, the reduced dimension is
retained with length 1.
Returns:
The reduced tensor.
"""
return math_ops.reduce_logsumexp(x, axis, keepdims)
@keras_export('keras.backend.round')
@dispatch.add_dispatch_support
def round(x):
"""Element-wise rounding to the closest integer.
In case of tie, the rounding mode used is "half to even".
Arguments:
x: Tensor or variable.
Returns:
A tensor.
"""
return math_ops.round(x)
@keras_export('keras.backend.sign')
@dispatch.add_dispatch_support
def sign(x):
"""Element-wise sign.
Arguments:
x: Tensor or variable.
Returns:
A tensor.
"""
return math_ops.sign(x)
@keras_export('keras.backend.pow')
@dispatch.add_dispatch_support
def pow(x, a):
"""Element-wise exponentiation.
Arguments:
x: Tensor or variable.
a: Python integer.
Returns:
A tensor.
"""
return math_ops.pow(x, a)
@keras_export('keras.backend.clip')
@dispatch.add_dispatch_support
def clip(x, min_value, max_value):
"""Element-wise value clipping.
Arguments:
x: Tensor or variable.
min_value: Python float, integer, or tensor.
max_value: Python float, integer, or tensor.
Returns:
A tensor.
"""
if (isinstance(min_value, (int, float)) and
isinstance(max_value, (int, float))):
if max_value < min_value:
max_value = min_value
if min_value is None:
min_value = -np.inf
if max_value is None:
max_value = np.inf
return clip_ops.clip_by_value(x, min_value, max_value)
@keras_export('keras.backend.equal')
@dispatch.add_dispatch_support
def equal(x, y):
"""Element-wise equality between two tensors.
Arguments:
x: Tensor or variable.
y: Tensor or variable.
Returns:
A bool tensor.
"""
return math_ops.equal(x, y)
@keras_export('keras.backend.not_equal')
@dispatch.add_dispatch_support
def not_equal(x, y):
"""Element-wise inequality between two tensors.
Arguments:
x: Tensor or variable.
y: Tensor or variable.
Returns:
A bool tensor.
"""
return math_ops.not_equal(x, y)
@keras_export('keras.backend.greater')
@dispatch.add_dispatch_support
def greater(x, y):
"""Element-wise truth value of (x > y).
Arguments:
x: Tensor or variable.
y: Tensor or variable.
Returns:
A bool tensor.
"""
return math_ops.greater(x, y)
@keras_export('keras.backend.greater_equal')
@dispatch.add_dispatch_support
def greater_equal(x, y):
"""Element-wise truth value of (x >= y).
Arguments:
x: Tensor or variable.
y: Tensor or variable.
Returns:
A bool tensor.
"""
return math_ops.greater_equal(x, y)
@keras_export('keras.backend.less')
@dispatch.add_dispatch_support
def less(x, y):
"""Element-wise truth value of (x < y).
Arguments:
x: Tensor or variable.
y: Tensor or variable.
Returns:
A bool tensor.
"""
return math_ops.less(x, y)
@keras_export('keras.backend.less_equal')
@dispatch.add_dispatch_support
def less_equal(x, y):
"""Element-wise truth value of (x <= y).
Arguments:
x: Tensor or variable.
y: Tensor or variable.
Returns:
A bool tensor.
"""
return math_ops.less_equal(x, y)
@keras_export('keras.backend.maximum')
@dispatch.add_dispatch_support
def maximum(x, y):
"""Element-wise maximum of two tensors.
Arguments:
x: Tensor or variable.
y: Tensor or variable.
Returns:
A tensor with the element wise maximum value(s) of `x` and `y`.
Examples:
>>> x = tf.Variable([[1, 2], [3, 4]])
>>> y = tf.Variable([[2, 1], [0, -1]])
>>> m = tf.keras.backend.maximum(x, y)
>>> m
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[2, 2],
[3, 4]], dtype=int32)>
"""
return math_ops.maximum(x, y)
@keras_export('keras.backend.minimum')
@dispatch.add_dispatch_support
def minimum(x, y):
"""Element-wise minimum of two tensors.
Arguments:
x: Tensor or variable.
y: Tensor or variable.
Returns:
A tensor.
"""
return math_ops.minimum(x, y)
@keras_export('keras.backend.sin')
@dispatch.add_dispatch_support
def sin(x):
"""Computes sin of x element-wise.
Arguments:
x: Tensor or variable.
Returns:
A tensor.
"""
return math_ops.sin(x)
@keras_export('keras.backend.cos')
@dispatch.add_dispatch_support
def cos(x):
"""Computes cos of x element-wise.
Arguments:
x: Tensor or variable.
Returns:
A tensor.
"""
return math_ops.cos(x)
def _regular_normalize_batch_in_training(x,
gamma,
beta,
reduction_axes,
epsilon=1e-3):
"""Non-fused version of `normalize_batch_in_training`.
Arguments:
x: Input tensor or variable.
gamma: Tensor by which to scale the input.
beta: Tensor with which to center the input.
reduction_axes: iterable of integers,
axes over which to normalize.
epsilon: Fuzz factor.
Returns:
A tuple length of 3, `(normalized_tensor, mean, variance)`.
"""
mean, var = nn.moments(x, reduction_axes, None, None, False)
normed = nn.batch_normalization(x, mean, var, beta, gamma, epsilon)
return normed, mean, var
def _broadcast_normalize_batch_in_training(x,
gamma,
beta,
reduction_axes,
epsilon=1e-3):
"""Non-fused, broadcast version of `normalize_batch_in_training`.
Arguments:
x: Input tensor or variable.
gamma: Tensor by which to scale the input.
beta: Tensor with which to center the input.
reduction_axes: iterable of integers,
axes over which to normalize.
epsilon: Fuzz factor.
Returns:
A tuple length of 3, `(normalized_tensor, mean, variance)`.
"""
mean, var = nn.moments(x, reduction_axes, None, None, False)
target_shape = []
for axis in range(ndim(x)):
if axis in reduction_axes:
target_shape.append(1)
else:
target_shape.append(array_ops.shape(x)[axis])
target_shape = array_ops.stack(target_shape)
broadcast_mean = array_ops.reshape(mean, target_shape)
broadcast_var = array_ops.reshape(var, target_shape)
if gamma is None:
broadcast_gamma = None
else:
broadcast_gamma = array_ops.reshape(gamma, target_shape)
if beta is None:
broadcast_beta = None
else:
broadcast_beta = array_ops.reshape(beta, target_shape)
normed = nn.batch_normalization(x, broadcast_mean, broadcast_var,
broadcast_beta, broadcast_gamma, epsilon)
return normed, mean, var
def _fused_normalize_batch_in_training(x,
gamma,
beta,
reduction_axes,
epsilon=1e-3):
"""Fused version of `normalize_batch_in_training`.
Arguments:
x: Input tensor or variable.
gamma: Tensor by which to scale the input.
beta: Tensor with which to center the input.
reduction_axes: iterable of integers,
axes over which to normalize.
epsilon: Fuzz factor.
Returns:
A tuple length of 3, `(normalized_tensor, mean, variance)`.
"""
if list(reduction_axes) == [0, 1, 2]:
normalization_axis = 3
tf_data_format = 'NHWC'
else:
normalization_axis = 1
tf_data_format = 'NCHW'
if gamma is None:
gamma = constant_op.constant(
1.0, dtype=x.dtype, shape=[x.shape[normalization_axis]])
if beta is None:
beta = constant_op.constant(
0.0, dtype=x.dtype, shape=[x.shape[normalization_axis]])
return nn.fused_batch_norm(
x, gamma, beta, epsilon=epsilon, data_format=tf_data_format)
@keras_export('keras.backend.normalize_batch_in_training')
def normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3):
"""Computes mean and std for batch then apply batch_normalization on batch.
Arguments:
x: Input tensor or variable.
gamma: Tensor by which to scale the input.
beta: Tensor with which to center the input.
reduction_axes: iterable of integers,
axes over which to normalize.
epsilon: Fuzz factor.
Returns:
A tuple length of 3, `(normalized_tensor, mean, variance)`.
"""
if ndim(x) == 4 and list(reduction_axes) in [[0, 1, 2], [0, 2, 3]]:
if not _has_nchw_support() and list(reduction_axes) == [0, 2, 3]:
return _broadcast_normalize_batch_in_training(
x, gamma, beta, reduction_axes, epsilon=epsilon)
return _fused_normalize_batch_in_training(
x, gamma, beta, reduction_axes, epsilon=epsilon)
else:
if sorted(reduction_axes) == list(range(ndim(x)))[:-1]:
return _regular_normalize_batch_in_training(
x, gamma, beta, reduction_axes, epsilon=epsilon)
else:
return _broadcast_normalize_batch_in_training(
x, gamma, beta, reduction_axes, epsilon=epsilon)
@keras_export('keras.backend.batch_normalization')
@dispatch.add_dispatch_support
def batch_normalization(x, mean, var, beta, gamma, axis=-1, epsilon=1e-3):
"""Applies batch normalization on x given mean, var, beta and gamma.
I.e. returns:
`output = (x - mean) / (sqrt(var) + epsilon) * gamma + beta`
Arguments:
x: Input tensor or variable.
mean: Mean of batch.
var: Variance of batch.
beta: Tensor with which to center the input.
gamma: Tensor by which to scale the input.
axis: Integer, the axis that should be normalized.
(typically the features axis).
epsilon: Fuzz factor.
Returns:
A tensor.
"""
if ndim(x) == 4:
# The CPU implementation of `fused_batch_norm` only supports NHWC
if axis == 1 or axis == -3:
tf_data_format = 'NCHW'
elif axis == 3 or axis == -1:
tf_data_format = 'NHWC'
else:
tf_data_format = None
if (tf_data_format == 'NHWC' or
tf_data_format == 'NCHW' and _has_nchw_support()):
# The mean / var / beta / gamma tensors may be broadcasted
# so they may have extra axes of size 1, which should be squeezed.
if ndim(mean) > 1:
mean = array_ops.reshape(mean, [-1])
if ndim(var) > 1:
var = array_ops.reshape(var, [-1])
if beta is None:
beta = zeros_like(mean)
elif ndim(beta) > 1:
beta = array_ops.reshape(beta, [-1])
if gamma is None:
gamma = ones_like(mean)
elif ndim(gamma) > 1:
gamma = array_ops.reshape(gamma, [-1])
y, _, _ = nn.fused_batch_norm(
x,
gamma,
beta,
epsilon=epsilon,
mean=mean,
variance=var,
data_format=tf_data_format,
is_training=False
)
return y
return nn.batch_normalization(x, mean, var, beta, gamma, epsilon)
# SHAPE OPERATIONS
@keras_export('keras.backend.concatenate')
@dispatch.add_dispatch_support
def concatenate(tensors, axis=-1):
"""Concatenates a list of tensors alongside the specified axis.
Arguments:
tensors: list of tensors to concatenate.
axis: concatenation axis.
Returns:
A tensor.
Example:
>>> a = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> b = tf.constant([[10, 20, 30], [40, 50, 60], [70, 80, 90]])
>>> tf.keras.backend.concatenate((a, b), axis=-1)
<tf.Tensor: shape=(3, 6), dtype=int32, numpy=
array([[ 1, 2, 3, 10, 20, 30],
[ 4, 5, 6, 40, 50, 60],
[ 7, 8, 9, 70, 80, 90]], dtype=int32)>
"""
if axis < 0:
rank = ndim(tensors[0])
if rank:
axis %= rank
else:
axis = 0
if py_all(is_sparse(x) for x in tensors):
return sparse_ops.sparse_concat(axis, tensors)
elif py_all(isinstance(x, ragged_tensor.RaggedTensor) for x in tensors):
return ragged_concat_ops.concat(tensors, axis)
else:
return array_ops.concat([to_dense(x) for x in tensors], axis)
@keras_export('keras.backend.reshape')
@dispatch.add_dispatch_support
def reshape(x, shape):
"""Reshapes a tensor to the specified shape.
Arguments:
x: Tensor or variable.
shape: Target shape tuple.
Returns:
A tensor.
Example:
>>> a = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
>>> a
<tf.Tensor: shape=(4, 3), dtype=int32, numpy=
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[10, 11, 12]], dtype=int32)>
>>> tf.keras.backend.reshape(a, shape=(2, 6))
<tf.Tensor: shape=(2, 6), dtype=int32, numpy=
array([[ 1, 2, 3, 4, 5, 6],
[ 7, 8, 9, 10, 11, 12]], dtype=int32)>
"""
return array_ops.reshape(x, shape)
@keras_export('keras.backend.permute_dimensions')
@dispatch.add_dispatch_support
def permute_dimensions(x, pattern):
"""Permutes axes in a tensor.
Arguments:
x: Tensor or variable.
pattern: A tuple of
dimension indices, e.g. `(0, 2, 1)`.
Returns:
A tensor.
Example:
>>> a = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
>>> a
<tf.Tensor: shape=(4, 3), dtype=int32, numpy=
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[10, 11, 12]], dtype=int32)>
>>> tf.keras.backend.permute_dimensions(a, pattern=(1, 0))
<tf.Tensor: shape=(3, 4), dtype=int32, numpy=
array([[ 1, 4, 7, 10],
[ 2, 5, 8, 11],
[ 3, 6, 9, 12]], dtype=int32)>
"""
return array_ops.transpose(x, perm=pattern)
@keras_export('keras.backend.resize_images')
@dispatch.add_dispatch_support
def resize_images(x, height_factor, width_factor, data_format,
interpolation='nearest'):
"""Resizes the images contained in a 4D tensor.
Arguments:
x: Tensor or variable to resize.
height_factor: Positive integer.
width_factor: Positive integer.
data_format: One of `"channels_first"`, `"channels_last"`.
interpolation: A string, one of `nearest` or `bilinear`.
Returns:
A tensor.
Raises:
ValueError: in case of incorrect value for
`data_format` or `interpolation`.
"""
if data_format == 'channels_first':
rows, cols = 2, 3
elif data_format == 'channels_last':
rows, cols = 1, 2
else:
raise ValueError('Invalid `data_format` argument: %s' % (data_format,))
original_shape = int_shape(x)
new_shape = array_ops.shape(x)[rows:cols + 1]
new_shape *= constant_op.constant(
np.array([height_factor, width_factor], dtype='int32'))
if data_format == 'channels_first':
x = permute_dimensions(x, [0, 2, 3, 1])
if interpolation == 'nearest':
x = image_ops.resize_images_v2(
x, new_shape, method=image_ops.ResizeMethod.NEAREST_NEIGHBOR)
elif interpolation == 'bilinear':
x = image_ops.resize_images_v2(x, new_shape,
method=image_ops.ResizeMethod.BILINEAR)
else:
raise ValueError('interpolation should be one '
'of "nearest" or "bilinear".')
if data_format == 'channels_first':
x = permute_dimensions(x, [0, 3, 1, 2])
if original_shape[rows] is None:
new_height = None
else:
new_height = original_shape[rows] * height_factor
if original_shape[cols] is None:
new_width = None
else:
new_width = original_shape[cols] * width_factor
if data_format == 'channels_first':
output_shape = (None, None, new_height, new_width)
else:
output_shape = (None, new_height, new_width, None)
x.set_shape(output_shape)
return x
@keras_export('keras.backend.resize_volumes')
@dispatch.add_dispatch_support
def resize_volumes(x, depth_factor, height_factor, width_factor, data_format):
"""Resizes the volume contained in a 5D tensor.
Arguments:
x: Tensor or variable to resize.
depth_factor: Positive integer.
height_factor: Positive integer.
width_factor: Positive integer.
data_format: One of `"channels_first"`, `"channels_last"`.
Returns:
A tensor.
Raises:
ValueError: if `data_format` is neither
`channels_last` or `channels_first`.
"""
if data_format == 'channels_first':
output = repeat_elements(x, depth_factor, axis=2)
output = repeat_elements(output, height_factor, axis=3)
output = repeat_elements(output, width_factor, axis=4)
return output
elif data_format == 'channels_last':
output = repeat_elements(x, depth_factor, axis=1)
output = repeat_elements(output, height_factor, axis=2)
output = repeat_elements(output, width_factor, axis=3)
return output
else:
raise ValueError('Invalid data_format: ' + str(data_format))
@keras_export('keras.backend.repeat_elements')
@dispatch.add_dispatch_support
def repeat_elements(x, rep, axis):
"""Repeats the elements of a tensor along an axis, like `np.repeat`.
If `x` has shape `(s1, s2, s3)` and `axis` is `1`, the output
will have shape `(s1, s2 * rep, s3)`.
Arguments:
x: Tensor or variable.
rep: Python integer, number of times to repeat.
axis: Axis along which to repeat.
Returns:
A tensor.
Example:
>>> b = tf.constant([1, 2, 3])
>>> tf.keras.backend.repeat_elements(b, rep=2, axis=0)
<tf.Tensor: shape=(6,), dtype=int32,
numpy=array([1, 1, 2, 2, 3, 3], dtype=int32)>
"""
x_shape = x.shape.as_list()
# For static axis
if x_shape[axis] is not None:
# slices along the repeat axis
splits = array_ops.split(value=x,
num_or_size_splits=x_shape[axis],
axis=axis)
# repeat each slice the given number of reps
x_rep = [s for s in splits for _ in range(rep)]
return concatenate(x_rep, axis)
# Here we use tf.tile to mimic behavior of np.repeat so that
# we can handle dynamic shapes (that include None).
# To do that, we need an auxiliary axis to repeat elements along
# it and then merge them along the desired axis.
# Repeating
auxiliary_axis = axis + 1
x_shape = array_ops.shape(x)
x_rep = array_ops.expand_dims(x, axis=auxiliary_axis)
reps = np.ones(len(x.shape) + 1)
reps[auxiliary_axis] = rep
x_rep = array_ops.tile(x_rep, reps)
# Merging
reps = np.delete(reps, auxiliary_axis)
reps[axis] = rep
reps = array_ops.constant(reps, dtype='int32')
x_shape *= reps
x_rep = array_ops.reshape(x_rep, x_shape)
# Fix shape representation
x_shape = x.shape.as_list()
x_rep.set_shape(x_shape)
x_rep._keras_shape = tuple(x_shape)
return x_rep
@keras_export('keras.backend.repeat')
@dispatch.add_dispatch_support
def repeat(x, n):
"""Repeats a 2D tensor.
if `x` has shape (samples, dim) and `n` is `2`,
the output will have shape `(samples, 2, dim)`.
Arguments:
x: Tensor or variable.
n: Python integer, number of times to repeat.
Returns:
A tensor.
Example:
>>> b = tf.constant([[1, 2], [3, 4]])
>>> b
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[1, 2],
[3, 4]], dtype=int32)>
>>> tf.keras.backend.repeat(b, n=2)
<tf.Tensor: shape=(2, 2, 2), dtype=int32, numpy=
array([[[1, 2],
[1, 2]],
[[3, 4],
[3, 4]]], dtype=int32)>
"""
assert ndim(x) == 2
x = array_ops.expand_dims(x, 1)
pattern = array_ops.stack([1, n, 1])
return array_ops.tile(x, pattern)
@keras_export('keras.backend.arange')
@dispatch.add_dispatch_support
def arange(start, stop=None, step=1, dtype='int32'):
"""Creates a 1D tensor containing a sequence of integers.
The function arguments use the same convention as
Theano's arange: if only one argument is provided,
it is in fact the "stop" argument and "start" is 0.
The default type of the returned tensor is `'int32'` to
match TensorFlow's default.
Arguments:
start: Start value.
stop: Stop value.
step: Difference between two successive values.
dtype: Integer dtype to use.
Returns:
An integer tensor.
Example:
>>> tf.keras.backend.arange(start=0, stop=10, step=1.5)
<tf.Tensor: shape=(7,), dtype=float32,
numpy=array([0. , 1.5, 3. , 4.5, 6. , 7.5, 9. ], dtype=float32)>
"""
# Match the behavior of numpy and Theano by returning an empty sequence.
if stop is None and start < 0:
start = 0
result = math_ops.range(start, limit=stop, delta=step, name='arange')
if dtype != 'int32':
result = cast(result, dtype)
return result
@keras_export('keras.backend.tile')
@dispatch.add_dispatch_support
def tile(x, n):
"""Creates a tensor by tiling `x` by `n`.
Arguments:
x: A tensor or variable
n: A list of integer. The length must be the same as the number of
dimensions in `x`.
Returns:
A tiled tensor.
"""
if isinstance(n, int):
n = [n]
return array_ops.tile(x, n)
@keras_export('keras.backend.flatten')
@dispatch.add_dispatch_support
def flatten(x):
"""Flatten a tensor.
Arguments:
x: A tensor or variable.
Returns:
A tensor, reshaped into 1-D
Example:
>>> b = tf.constant([[1, 2], [3, 4]])
>>> b
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[1, 2],
[3, 4]], dtype=int32)>
>>> tf.keras.backend.flatten(b)
<tf.Tensor: shape=(4,), dtype=int32,
numpy=array([1, 2, 3, 4], dtype=int32)>
"""
return array_ops.reshape(x, [-1])
@keras_export('keras.backend.batch_flatten')
@dispatch.add_dispatch_support
def batch_flatten(x):
"""Turn a nD tensor into a 2D tensor with same 0th dimension.
In other words, it flattens each data samples of a batch.
Arguments:
x: A tensor or variable.
Returns:
A tensor.
Examples:
Flattening a 3D tensor to 2D by collapsing the last dimension.
>>> x_batch = tf.keras.backend.ones(shape=(2, 3, 4, 5))
>>> x_batch_flatten = batch_flatten(x_batch)
>>> tf.keras.backend.int_shape(x_batch_flatten)
(2, 60)
"""
x = array_ops.reshape(x, array_ops.stack([-1, prod(shape(x)[1:])]))
return x
@keras_export('keras.backend.expand_dims')
@dispatch.add_dispatch_support
def expand_dims(x, axis=-1):
"""Adds a 1-sized dimension at index "axis".
Arguments:
x: A tensor or variable.
axis: Position where to add a new axis.
Returns:
A tensor with expanded dimensions.
"""
return array_ops.expand_dims(x, axis)
@keras_export('keras.backend.squeeze')
@dispatch.add_dispatch_support
def squeeze(x, axis):
"""Removes a 1-dimension from the tensor at index "axis".
Arguments:
x: A tensor or variable.
axis: Axis to drop.
Returns:
A tensor with the same data as `x` but reduced dimensions.
"""
return array_ops.squeeze(x, [axis])
@keras_export('keras.backend.temporal_padding')
@dispatch.add_dispatch_support
def temporal_padding(x, padding=(1, 1)):
"""Pads the middle dimension of a 3D tensor.
Arguments:
x: Tensor or variable.
padding: Tuple of 2 integers, how many zeros to
add at the start and end of dim 1.
Returns:
A padded 3D tensor.
"""
assert len(padding) == 2
pattern = [[0, 0], [padding[0], padding[1]], [0, 0]]
return array_ops.pad(x, pattern)
@keras_export('keras.backend.spatial_2d_padding')
@dispatch.add_dispatch_support
def spatial_2d_padding(x, padding=((1, 1), (1, 1)), data_format=None):
"""Pads the 2nd and 3rd dimensions of a 4D tensor.
Arguments:
x: Tensor or variable.
padding: Tuple of 2 tuples, padding pattern.
data_format: One of `channels_last` or `channels_first`.
Returns:
A padded 4D tensor.
Raises:
ValueError: if `data_format` is neither
`channels_last` or `channels_first`.
"""
assert len(padding) == 2
assert len(padding[0]) == 2
assert len(padding[1]) == 2
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
if data_format == 'channels_first':
pattern = [[0, 0], [0, 0], list(padding[0]), list(padding[1])]
else:
pattern = [[0, 0], list(padding[0]), list(padding[1]), [0, 0]]
return array_ops.pad(x, pattern)
@keras_export('keras.backend.spatial_3d_padding')
@dispatch.add_dispatch_support
def spatial_3d_padding(x, padding=((1, 1), (1, 1), (1, 1)), data_format=None):
"""Pads 5D tensor with zeros along the depth, height, width dimensions.
Pads these dimensions with respectively
"padding[0]", "padding[1]" and "padding[2]" zeros left and right.
For 'channels_last' data_format,
the 2nd, 3rd and 4th dimension will be padded.
For 'channels_first' data_format,
the 3rd, 4th and 5th dimension will be padded.
Arguments:
x: Tensor or variable.
padding: Tuple of 3 tuples, padding pattern.
data_format: One of `channels_last` or `channels_first`.
Returns:
A padded 5D tensor.
Raises:
ValueError: if `data_format` is neither
`channels_last` or `channels_first`.
"""
assert len(padding) == 3
assert len(padding[0]) == 2
assert len(padding[1]) == 2
assert len(padding[2]) == 2
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
if data_format == 'channels_first':
pattern = [[0, 0], [0, 0], [padding[0][0], padding[0][1]],
[padding[1][0], padding[1][1]], [padding[2][0], padding[2][1]]]
else:
pattern = [[0, 0], [padding[0][0], padding[0][1]],
[padding[1][0], padding[1][1]], [padding[2][0],
padding[2][1]], [0, 0]]
return array_ops.pad(x, pattern)
@keras_export('keras.backend.stack')
@dispatch.add_dispatch_support
def stack(x, axis=0):
"""Stacks a list of rank `R` tensors into a rank `R+1` tensor.
Arguments:
x: List of tensors.
axis: Axis along which to perform stacking.
Returns:
A tensor.
Example:
>>> a = tf.constant([[1, 2],[3, 4]])
>>> b = tf.constant([[10, 20],[30, 40]])
>>> tf.keras.backend.stack((a, b))
<tf.Tensor: shape=(2, 2, 2), dtype=int32, numpy=
array([[[ 1, 2],
[ 3, 4]],
[[10, 20],
[30, 40]]], dtype=int32)>
"""
return array_ops.stack(x, axis=axis)
@keras_export('keras.backend.one_hot')
@dispatch.add_dispatch_support
def one_hot(indices, num_classes):
"""Computes the one-hot representation of an integer tensor.
Arguments:
indices: nD integer tensor of shape
`(batch_size, dim1, dim2, ... dim(n-1))`
num_classes: Integer, number of classes to consider.
Returns:
(n + 1)D one hot representation of the input
with shape `(batch_size, dim1, dim2, ... dim(n-1), num_classes)`
Returns:
The one-hot tensor.
"""
return array_ops.one_hot(indices, depth=num_classes, axis=-1)
@keras_export('keras.backend.reverse')
@dispatch.add_dispatch_support
def reverse(x, axes):
"""Reverse a tensor along the specified axes.
Arguments:
x: Tensor to reverse.
axes: Integer or iterable of integers.
Axes to reverse.
Returns:
A tensor.
"""
if isinstance(axes, int):
axes = [axes]
return array_ops.reverse(x, axes)
# VALUE MANIPULATION
_VALUE_SET_CODE_STRING = """
>>> K = tf.keras.backend # Common keras convention
>>> v = K.variable(1.)
>>> # reassign
>>> K.set_value(v, 2.)
>>> print(K.get_value(v))
2.0
>>> # increment
>>> K.set_value(v, K.get_value(v) + 1)
>>> print(K.get_value(v))
3.0
Variable semantics in TensorFlow 2 are eager execution friendly. The above
code is roughly equivalent to:
>>> v = tf.Variable(1.)
>>> v.assign(2.)
>>> print(v.numpy())
2.0
>>> v.assign_add(1.)
>>> print(v.numpy())
3.0"""[3:] # Prune first newline and indent to match the docstring template.
@keras_export('keras.backend.get_value')
def get_value(x):
"""Returns the value of a variable.
`backend.get_value` is the compliment of `backend.set_value`, and provides
a generic interface for reading from variables while abstracting away the
differences between TensorFlow 1.x and 2.x semantics.
{snippet}
Arguments:
x: input variable.
Returns:
A Numpy array.
"""
if not tensor_util.is_tensor(x):
return x
if context.executing_eagerly() or isinstance(x, ops.EagerTensor):
return x.numpy()
if not getattr(x, '_in_graph_mode', True):
# This is a variable which was created in an eager context, but is being
# evaluated from a Graph.
with context.eager_mode():
return x.numpy()
if ops.executing_eagerly_outside_functions():
# This method of evaluating works inside the Keras FuncGraph.
return eval_in_eager_or_function(x)
with x.graph.as_default():
return x.eval(session=get_session((x,)))
@keras_export('keras.backend.batch_get_value')
@dispatch.add_dispatch_support
def batch_get_value(tensors):
"""Returns the value of more than one tensor variable.
Arguments:
tensors: list of ops to run.
Returns:
A list of Numpy arrays.
Raises:
RuntimeError: If this method is called inside defun.
"""
if context.executing_eagerly():
return [x.numpy() for x in tensors]
elif ops.inside_function(): # pylint: disable=protected-access
raise RuntimeError('Cannot get value inside Tensorflow graph function.')
if tensors:
return get_session(tensors).run(tensors)
else:
return []
@keras_export('keras.backend.set_value')
def set_value(x, value):
"""Sets the value of a variable, from a Numpy array.
`backend.set_value` is the compliment of `backend.get_value`, and provides
a generic interface for assigning to variables while abstracting away the
differences between TensorFlow 1.x and 2.x semantics.
{snippet}
Arguments:
x: Variable to set to a new value.
value: Value to set the tensor to, as a Numpy array
(of the same shape).
"""
value = np.asarray(value, dtype=dtype(x))
if ops.executing_eagerly_outside_functions():
x.assign(value)
else:
with get_graph().as_default():
tf_dtype = dtypes_module.as_dtype(x.dtype.name.split('_')[0])
if hasattr(x, '_assign_placeholder'):
assign_placeholder = x._assign_placeholder
assign_op = x._assign_op
else:
# In order to support assigning weights to resizable variables in
# Keras, we make a placeholder with the correct number of dimensions
# but with None in each dimension. This way, we can assign weights
# of any size (as long as they have the correct dimensionality).
placeholder_shape = tensor_shape.TensorShape([None] * value.ndim)
assign_placeholder = array_ops.placeholder(
tf_dtype, shape=placeholder_shape)
assign_op = x.assign(assign_placeholder)
x._assign_placeholder = assign_placeholder
x._assign_op = assign_op
get_session().run(assign_op, feed_dict={assign_placeholder: value})
@keras_export('keras.backend.batch_set_value')
@dispatch.add_dispatch_support
def batch_set_value(tuples):
"""Sets the values of many tensor variables at once.
Arguments:
tuples: a list of tuples `(tensor, value)`.
`value` should be a Numpy array.
"""
if ops.executing_eagerly_outside_functions():
for x, value in tuples:
x.assign(np.asarray(value, dtype=dtype(x)))
else:
with get_graph().as_default():
if tuples:
assign_ops = []
feed_dict = {}
for x, value in tuples:
value = np.asarray(value, dtype=dtype(x))
tf_dtype = dtypes_module.as_dtype(x.dtype.name.split('_')[0])
if hasattr(x, '_assign_placeholder'):
assign_placeholder = x._assign_placeholder
assign_op = x._assign_op
else:
# In order to support assigning weights to resizable variables in
# Keras, we make a placeholder with the correct number of dimensions
# but with None in each dimension. This way, we can assign weights
# of any size (as long as they have the correct dimensionality).
placeholder_shape = tensor_shape.TensorShape([None] * value.ndim)
assign_placeholder = array_ops.placeholder(
tf_dtype, shape=placeholder_shape)
assign_op = x.assign(assign_placeholder)
x._assign_placeholder = assign_placeholder
x._assign_op = assign_op
assign_ops.append(assign_op)
feed_dict[assign_placeholder] = value
get_session().run(assign_ops, feed_dict=feed_dict)
get_value.__doc__ = get_value.__doc__.format(snippet=_VALUE_SET_CODE_STRING)
set_value.__doc__ = set_value.__doc__.format(snippet=_VALUE_SET_CODE_STRING)
@keras_export('keras.backend.print_tensor')
@dispatch.add_dispatch_support
def print_tensor(x, message=''):
"""Prints `message` and the tensor value when evaluated.
Note that `print_tensor` returns a new tensor identical to `x`
which should be used in the following code. Otherwise the
print operation is not taken into account during evaluation.
Example:
>>> x = tf.constant([[1.0, 2.0], [3.0, 4.0]])
>>> tf.keras.backend.print_tensor(x)
<tf.Tensor: shape=(2, 2), dtype=float32, numpy=
array([[1., 2.],
[3., 4.]], dtype=float32)>
Arguments:
x: Tensor to print.
message: Message to print jointly with the tensor.
Returns:
The same tensor `x`, unchanged.
"""
if isinstance(x, ops.Tensor) and hasattr(x, 'graph'):
with get_graph().as_default():
op = logging_ops.print_v2(message, x, output_stream=sys.stdout)
with ops.control_dependencies([op]):
return array_ops.identity(x)
else:
logging_ops.print_v2(message, x, output_stream=sys.stdout)
return x
# GRAPH MANIPULATION
class GraphExecutionFunction(object):
"""Runs a computation graph.
It's possible to pass arguments to `tf.Session.run()` via `session_kwargs`.
In particular additional operations via `fetches` argument and additional
tensor substitutions via `feed_dict` arguments. Note that given
substitutions are merged with substitutions from `inputs`. Even though
`feed_dict` is passed once in the constructor (called in `model.compile()`)
we can modify the values in the dictionary. Through this feed_dict we can
provide additional substitutions besides Keras inputs.
Arguments:
inputs: Feed placeholders to the computation graph.
outputs: Output tensors to fetch.
updates: Additional update ops to be run at function call.
name: A name to help users identify what this function does.
session_kwargs: Arguments to `tf.Session.run()`:
`fetches`, `feed_dict`, `options`, `run_metadata`.
"""
def __init__(self, inputs, outputs, updates=None, name=None,
**session_kwargs):
updates = updates or []
if not isinstance(updates, (list, tuple)):
raise TypeError('`updates` in a Keras backend function '
'should be a list or tuple.')
self._inputs_structure = inputs
self.inputs = nest.flatten(inputs, expand_composites=True)
self._outputs_structure = outputs
self.outputs = cast_variables_to_tensor(
nest.flatten(outputs, expand_composites=True))
# TODO(b/127668432): Consider using autograph to generate these
# dependencies in call.
# Index 0 = total loss or model output for `predict`.
with ops.control_dependencies([self.outputs[0]]):
updates_ops = []
for update in updates:
if isinstance(update, tuple):
p, new_p = update
updates_ops.append(state_ops.assign(p, new_p))
else:
# assumed already an op
updates_ops.append(update)
self.updates_op = control_flow_ops.group(*updates_ops)
self.name = name
# additional tensor substitutions
self.feed_dict = session_kwargs.pop('feed_dict', None)
# additional operations
self.fetches = session_kwargs.pop('fetches', [])
if not isinstance(self.fetches, list):
self.fetches = [self.fetches]
self.run_options = session_kwargs.pop('options', None)
self.run_metadata = session_kwargs.pop('run_metadata', None)
# The main use case of `fetches` being passed to a model is the ability
# to run custom updates
# This requires us to wrap fetches in `identity` ops.
self.fetches = [array_ops.identity(x) for x in self.fetches]
self.session_kwargs = session_kwargs
# This mapping keeps track of the function that should receive the
# output from a fetch in `fetches`: { fetch: function(fetch_output) }
# A Callback can use this to register a function with access to the
# output values for a fetch it added.
self.fetch_callbacks = {}
if session_kwargs:
raise ValueError('Some keys in session_kwargs are not supported at this '
'time: %s' % (session_kwargs.keys(),))
self._callable_fn = None
self._feed_arrays = None
self._feed_symbols = None
self._symbol_vals = None
self._fetches = None
self._session = None
def _make_callable(self, feed_arrays, feed_symbols, symbol_vals, session):
"""Generates a callable that runs the graph.
Arguments:
feed_arrays: List of input tensors to be fed Numpy arrays at runtime.
feed_symbols: List of input tensors to be fed symbolic tensors at runtime.
symbol_vals: List of symbolic tensors to be fed to `feed_symbols`.
session: Session to use to generate the callable.
Returns:
Function that runs the graph according to the above options.
"""
# Prepare callable options.
callable_opts = config_pb2.CallableOptions()
# Handle external-data feed.
for x in feed_arrays:
callable_opts.feed.append(x.name)
if self.feed_dict:
for key in sorted(self.feed_dict.keys()):
callable_opts.feed.append(key.name)
# Handle symbolic feed.
for x, y in zip(feed_symbols, symbol_vals):
connection = callable_opts.tensor_connection.add()
if x.dtype != y.dtype:
y = math_ops.cast(y, dtype=x.dtype)
from_tensor = ops._as_graph_element(y)
if from_tensor is None:
from_tensor = y
connection.from_tensor = from_tensor.name # Data tensor
connection.to_tensor = x.name # Placeholder
# Handle fetches.
for x in self.outputs + self.fetches:
callable_opts.fetch.append(x.name)
# Handle updates.
callable_opts.target.append(self.updates_op.name)
# Handle run_options.
if self.run_options:
callable_opts.run_options.CopyFrom(self.run_options)
# Create callable.
callable_fn = session._make_callable_from_options(callable_opts)
# Cache parameters corresponding to the generated callable, so that
# we can detect future mismatches and refresh the callable.
self._callable_fn = callable_fn
self._feed_arrays = feed_arrays
self._feed_symbols = feed_symbols
self._symbol_vals = symbol_vals
self._fetches = list(self.fetches)
self._session = session
def _call_fetch_callbacks(self, fetches_output):
for fetch, output in zip(self._fetches, fetches_output):
if fetch in self.fetch_callbacks:
self.fetch_callbacks[fetch](output)
def _eval_if_composite(self, tensor):
"""Helper method which evaluates any CompositeTensors passed to it."""
# We need to evaluate any composite tensor objects that have been
# reconstructed in 'pack_sequence_as', since otherwise they'll be output as
# actual CompositeTensor objects instead of the value(s) contained in the
# CompositeTensors. E.g., if output_structure contains a SparseTensor, then
# this ensures that we return its value as a SparseTensorValue rather than
# a SparseTensor.
if isinstance(tensor, composite_tensor.CompositeTensor):
return self._session.run(tensor)
else:
return tensor
def __call__(self, inputs):
inputs = nest.flatten(inputs, expand_composites=True)
session = get_session(inputs)
feed_arrays = []
array_vals = []
feed_symbols = []
symbol_vals = []
for tensor, value in zip(self.inputs, inputs):
if value is None:
continue
if tensor_util.is_tensor(value):
# Case: feeding symbolic tensor.
feed_symbols.append(tensor)
symbol_vals.append(value)
else:
# Case: feeding Numpy array.
feed_arrays.append(tensor)
# We need to do array conversion and type casting at this level, since
# `callable_fn` only supports exact matches.
tensor_type = dtypes_module.as_dtype(tensor.dtype)
array_vals.append(np.asarray(value,
dtype=tensor_type.as_numpy_dtype))
if self.feed_dict:
for key in sorted(self.feed_dict.keys()):
array_vals.append(
np.asarray(self.feed_dict[key], dtype=key.dtype.base_dtype.name))
# Refresh callable if anything has changed.
if (self._callable_fn is None or feed_arrays != self._feed_arrays or
symbol_vals != self._symbol_vals or
feed_symbols != self._feed_symbols or self.fetches != self._fetches or
session != self._session):
self._make_callable(feed_arrays, feed_symbols, symbol_vals, session)
fetched = self._callable_fn(*array_vals,
run_metadata=self.run_metadata)
self._call_fetch_callbacks(fetched[-len(self._fetches):])
output_structure = nest.pack_sequence_as(
self._outputs_structure,
fetched[:len(self.outputs)],
expand_composites=True)
# We need to evaluate any composite tensor objects that have been
# reconstructed in 'pack_sequence_as', since otherwise they'll be output as
# actual CompositeTensor objects instead of the value(s) contained in the
# CompositeTensors. E.g., if output_structure contains a SparseTensor, then
# this ensures that we return its value as a SparseTensorValue rather than
# a SparseTensor.
return nest.map_structure(self._eval_if_composite, output_structure)
def eval_in_eager_or_function(outputs):
"""Method to evaluate a tensor in eager or in a tf.function.
In the case of a tf.function, it will lift the tensor out of the function
and try to evaluate that piece of the graph.
Warning: Do not add new usages of this function.
TODO(b/150169018): delete this function once _keras_history_helper is no
longer needed, after Keras switches to KerasTensors and op layers
work via dispatch.
Arguments:
outputs: tensors to fetch.
Returns:
The value of the tensors (as numpy arrays).
"""
outputs_structure = outputs
outputs = nest.flatten(outputs, expand_composites=True)
graphs = {
i.graph
for i in nest.flatten([outputs])
if hasattr(i, 'graph')
}
if len(graphs) > 1:
raise ValueError('Cannot create an execution function which is comprised '
'of elements from multiple graphs.')
source_graph = graphs.pop()
with _scratch_graph() as exec_graph:
global_graph = get_graph()
if source_graph not in (exec_graph, global_graph):
raise ValueError('Unknown graph. Aborting.')
if source_graph is global_graph and exec_graph is not global_graph:
init_tensors = outputs
lifted_map = lift_to_graph.lift_to_graph(
tensors=init_tensors,
graph=exec_graph,
sources=[],
add_sources=True,
handle_captures=True,
base_graph=source_graph)
outputs = [lifted_map[i] for i in outputs]
# Consolidate updates
with exec_graph.as_default():
outputs = cast_variables_to_tensor(outputs)
exec_graph.inputs = exec_graph.internal_captures
exec_graph.outputs = outputs
graph_fn = eager_function.ConcreteFunction(exec_graph)
graph_fn._num_positional_args = 0
graph_fn._arg_keywords = []
outputs = graph_fn()
# EagerTensor.numpy() will often make a copy to ensure memory safety.
# However in this case `outputs` is not directly returned, so it is always
# safe to reuse the underlying buffer without checking. In such a case the
# private numpy conversion method is preferred to guarantee performance.
return nest.pack_sequence_as(
outputs_structure,
[x._numpy() for x in outputs], # pylint: disable=protected-access
expand_composites=True)
@keras_export('keras.backend.function')
def function(inputs, outputs, updates=None, name=None, **kwargs):
"""Instantiates a Keras function.
Arguments:
inputs: List of placeholder tensors.
outputs: List of output tensors.
updates: List of update ops.
name: String, name of function.
**kwargs: Passed to `tf.Session.run`.
Returns:
Output values as Numpy arrays.
Raises:
ValueError: if invalid kwargs are passed in or if in eager execution.
"""
if ops.executing_eagerly_outside_functions():
if kwargs:
raise ValueError('Session keyword arguments are not supported during '
'eager execution. You passed: %s' % (kwargs,))
if updates:
raise ValueError('`updates` argument is not supported during '
'eager execution. You passed: %s' % (updates,))
from tensorflow.python.keras import models # pylint: disable=g-import-not-at-top
from tensorflow.python.keras.utils import tf_utils # pylint: disable=g-import-not-at-top
model = models.Model(inputs=inputs, outputs=outputs)
wrap_outputs = isinstance(outputs, list) and len(outputs) == 1
def func(model_inputs):
outs = model(model_inputs)
if wrap_outputs:
outs = [outs]
return tf_utils.to_numpy_or_python_type(outs)
return func
if kwargs:
for key in kwargs:
if (key not in tf_inspect.getfullargspec(session_module.Session.run)[0]
and key not in ['inputs', 'outputs', 'updates', 'name']):
msg = ('Invalid argument "%s" passed to K.function with TensorFlow '
'backend') % key
raise ValueError(msg)
return GraphExecutionFunction(
inputs, outputs, updates=updates, name=name, **kwargs)
@keras_export('keras.backend.gradients')
def gradients(loss, variables):
"""Returns the gradients of `loss` w.r.t. `variables`.
Arguments:
loss: Scalar tensor to minimize.
variables: List of variables.
Returns:
A gradients tensor.
"""
return gradients_module.gradients(
loss, variables, colocate_gradients_with_ops=True)
@keras_export('keras.backend.stop_gradient')
@dispatch.add_dispatch_support
def stop_gradient(variables):
"""Returns `variables` but with zero gradient w.r.t. every other variable.
Arguments:
variables: Tensor or list of tensors to consider constant with respect
to any other variable.
Returns:
A single tensor or a list of tensors (depending on the passed argument)
that has no gradient with respect to any other variable.
"""
if isinstance(variables, (list, tuple)):
return map(array_ops.stop_gradient, variables)
return array_ops.stop_gradient(variables)
# CONTROL FLOW
@keras_export('keras.backend.rnn')
@dispatch.add_dispatch_support
def rnn(step_function,
inputs,
initial_states,
go_backwards=False,
mask=None,
constants=None,
unroll=False,
input_length=None,
time_major=False,
zero_output_for_mask=False):
"""Iterates over the time dimension of a tensor.
Arguments:
step_function: RNN step function.
Args;
input; Tensor with shape `(samples, ...)` (no time dimension),
representing input for the batch of samples at a certain
time step.
states; List of tensors.
Returns;
output; Tensor with shape `(samples, output_dim)`
(no time dimension).
new_states; List of tensors, same length and shapes
as 'states'. The first state in the list must be the
output tensor at the previous timestep.
inputs: Tensor of temporal data of shape `(samples, time, ...)`
(at least 3D), or nested tensors, and each of which has shape
`(samples, time, ...)`.
initial_states: Tensor with shape `(samples, state_size)`
(no time dimension), containing the initial values for the states used
in the step function. In the case that state_size is in a nested
shape, the shape of initial_states will also follow the nested
structure.
go_backwards: Boolean. If True, do the iteration over the time
dimension in reverse order and return the reversed sequence.
mask: Binary tensor with shape `(samples, time, 1)`,
with a zero for every element that is masked.
constants: List of constant values passed at each step.
unroll: Whether to unroll the RNN or to use a symbolic `while_loop`.
input_length: An integer or a 1-D Tensor, depending on whether
the time dimension is fixed-length or not. In case of variable length
input, it is used for masking in case there's no mask specified.
time_major: Boolean. If true, the inputs and outputs will be in shape
`(timesteps, batch, ...)`, whereas in the False case, it will be
`(batch, timesteps, ...)`. Using `time_major = True` is a bit more
efficient because it avoids transposes at the beginning and end of the
RNN calculation. However, most TensorFlow data is batch-major, so by
default this function accepts input and emits output in batch-major
form.
zero_output_for_mask: Boolean. If True, the output for masked timestep
will be zeros, whereas in the False case, output from previous
timestep is returned.
Returns:
A tuple, `(last_output, outputs, new_states)`.
last_output: the latest output of the rnn, of shape `(samples, ...)`
outputs: tensor with shape `(samples, time, ...)` where each
entry `outputs[s, t]` is the output of the step function
at time `t` for sample `s`.
new_states: list of tensors, latest states returned by
the step function, of shape `(samples, ...)`.
Raises:
ValueError: if input dimension is less than 3.
ValueError: if `unroll` is `True` but input timestep is not a fixed
number.
ValueError: if `mask` is provided (not `None`) but states is not provided
(`len(states)` == 0).
"""
def swap_batch_timestep(input_t):
# Swap the batch and timestep dim for the incoming tensor.
axes = list(range(len(input_t.shape)))
axes[0], axes[1] = 1, 0
return array_ops.transpose(input_t, axes)
if not time_major:
inputs = nest.map_structure(swap_batch_timestep, inputs)
flatted_inputs = nest.flatten(inputs)
time_steps = flatted_inputs[0].shape[0]
batch = flatted_inputs[0].shape[1]
time_steps_t = array_ops.shape(flatted_inputs[0])[0]
for input_ in flatted_inputs:
input_.shape.with_rank_at_least(3)
if mask is not None:
if mask.dtype != dtypes_module.bool:
mask = math_ops.cast(mask, dtypes_module.bool)
if len(mask.shape) == 2:
mask = expand_dims(mask)
if not time_major:
mask = swap_batch_timestep(mask)
if constants is None:
constants = []
# tf.where needs its condition tensor to be the same shape as its two
# result tensors, but in our case the condition (mask) tensor is
# (nsamples, 1), and inputs are (nsamples, ndimensions) or even more.
# So we need to broadcast the mask to match the shape of inputs.
# That's what the tile call does, it just repeats the mask along its
# second dimension n times.
def _expand_mask(mask_t, input_t, fixed_dim=1):
if nest.is_sequence(mask_t):
raise ValueError('mask_t is expected to be tensor, but got %s' % mask_t)
if nest.is_sequence(input_t):
raise ValueError('input_t is expected to be tensor, but got %s' % input_t)
rank_diff = len(input_t.shape) - len(mask_t.shape)
for _ in range(rank_diff):
mask_t = array_ops.expand_dims(mask_t, -1)
multiples = [1] * fixed_dim + input_t.shape.as_list()[fixed_dim:]
return array_ops.tile(mask_t, multiples)
if unroll:
if not time_steps:
raise ValueError('Unrolling requires a fixed number of timesteps.')
states = tuple(initial_states)
successive_states = []
successive_outputs = []
# Process the input tensors. The input tensor need to be split on the
# time_step dim, and reverse if go_backwards is True. In the case of nested
# input, the input is flattened and then transformed individually.
# The result of this will be a tuple of lists, each of the item in tuple is
# list of the tensor with shape (batch, feature)
def _process_single_input_t(input_t):
input_t = array_ops.unstack(input_t) # unstack for time_step dim
if go_backwards:
input_t.reverse()
return input_t
if nest.is_sequence(inputs):
processed_input = nest.map_structure(_process_single_input_t, inputs)
else:
processed_input = (_process_single_input_t(inputs),)
def _get_input_tensor(time):
inp = [t_[time] for t_ in processed_input]
return nest.pack_sequence_as(inputs, inp)
if mask is not None:
mask_list = array_ops.unstack(mask)
if go_backwards:
mask_list.reverse()
for i in range(time_steps):
inp = _get_input_tensor(i)
mask_t = mask_list[i]
output, new_states = step_function(inp,
tuple(states) + tuple(constants))
tiled_mask_t = _expand_mask(mask_t, output)
if not successive_outputs:
prev_output = zeros_like(output)
else:
prev_output = successive_outputs[-1]
output = array_ops.where_v2(tiled_mask_t, output, prev_output)
flat_states = nest.flatten(states)
flat_new_states = nest.flatten(new_states)
tiled_mask_t = tuple(_expand_mask(mask_t, s) for s in flat_states)
flat_final_states = tuple(
array_ops.where_v2(m, s, ps)
for m, s, ps in zip(tiled_mask_t, flat_new_states, flat_states))
states = nest.pack_sequence_as(states, flat_final_states)
successive_outputs.append(output)
successive_states.append(states)
last_output = successive_outputs[-1]
new_states = successive_states[-1]
outputs = array_ops.stack(successive_outputs)
if zero_output_for_mask:
last_output = array_ops.where_v2(
_expand_mask(mask_list[-1], last_output), last_output,
zeros_like(last_output))
outputs = array_ops.where_v2(
_expand_mask(mask, outputs, fixed_dim=2), outputs,
zeros_like(outputs))
else: # mask is None
for i in range(time_steps):
inp = _get_input_tensor(i)
output, states = step_function(inp, tuple(states) + tuple(constants))
successive_outputs.append(output)
successive_states.append(states)
last_output = successive_outputs[-1]
new_states = successive_states[-1]
outputs = array_ops.stack(successive_outputs)
else: # Unroll == False
states = tuple(initial_states)
# Create input tensor array, if the inputs is nested tensors, then it will
# be flattened first, and tensor array will be created one per flattened
# tensor.
input_ta = tuple(
tensor_array_ops.TensorArray(
dtype=inp.dtype,
size=time_steps_t,
tensor_array_name='input_ta_%s' % i)
for i, inp in enumerate(flatted_inputs))
input_ta = tuple(
ta.unstack(input_) if not go_backwards else ta
.unstack(reverse(input_, 0))
for ta, input_ in zip(input_ta, flatted_inputs))
# Get the time(0) input and compute the output for that, the output will be
# used to determine the dtype of output tensor array. Don't read from
# input_ta due to TensorArray clear_after_read default to True.
input_time_zero = nest.pack_sequence_as(inputs,
[inp[0] for inp in flatted_inputs])
# output_time_zero is used to determine the cell output shape and its dtype.
# the value is discarded.
output_time_zero, _ = step_function(
input_time_zero, tuple(initial_states) + tuple(constants))
output_ta = tuple(
tensor_array_ops.TensorArray(
dtype=out.dtype,
size=time_steps_t,
element_shape=out.shape,
tensor_array_name='output_ta_%s' % i)
for i, out in enumerate(nest.flatten(output_time_zero)))
time = constant_op.constant(0, dtype='int32', name='time')
# We only specify the 'maximum_iterations' when building for XLA since that
# causes slowdowns on GPU in TF.
if (not context.executing_eagerly() and
control_flow_util.GraphOrParentsInXlaContext(ops.get_default_graph())):
max_iterations = math_ops.reduce_max(input_length)
else:
max_iterations = None
while_loop_kwargs = {
'cond': lambda time, *_: time < time_steps_t,
'maximum_iterations': max_iterations,
'parallel_iterations': 32,
'swap_memory': True,
}
if mask is not None:
if go_backwards:
mask = reverse(mask, 0)
mask_ta = tensor_array_ops.TensorArray(
dtype=dtypes_module.bool,
size=time_steps_t,
tensor_array_name='mask_ta')
mask_ta = mask_ta.unstack(mask)
def masking_fn(time):
return mask_ta.read(time)
def compute_masked_output(mask_t, flat_out, flat_mask):
tiled_mask_t = tuple(
_expand_mask(mask_t, o, fixed_dim=len(mask_t.shape))
for o in flat_out)
return tuple(
array_ops.where_v2(m, o, fm)
for m, o, fm in zip(tiled_mask_t, flat_out, flat_mask))
elif isinstance(input_length, ops.Tensor):
if go_backwards:
max_len = math_ops.reduce_max(input_length, axis=0)
rev_input_length = math_ops.subtract(max_len - 1, input_length)
def masking_fn(time):
return math_ops.less(rev_input_length, time)
else:
def masking_fn(time):
return math_ops.greater(input_length, time)
def compute_masked_output(mask_t, flat_out, flat_mask):
return tuple(
array_ops.where(mask_t, o, zo)
for (o, zo) in zip(flat_out, flat_mask))
else:
masking_fn = None
if masking_fn is not None:
# Mask for the T output will be base on the output of T - 1. In the case
# T = 0, a zero filled tensor will be used.
flat_zero_output = tuple(array_ops.zeros_like(o)
for o in nest.flatten(output_time_zero))
def _step(time, output_ta_t, prev_output, *states):
"""RNN step function.
Arguments:
time: Current timestep value.
output_ta_t: TensorArray.
prev_output: tuple of outputs from time - 1.
*states: List of states.
Returns:
Tuple: `(time + 1, output_ta_t, output) + tuple(new_states)`
"""
current_input = tuple(ta.read(time) for ta in input_ta)
# maybe set shape.
current_input = nest.pack_sequence_as(inputs, current_input)
mask_t = masking_fn(time)
output, new_states = step_function(current_input,
tuple(states) + tuple(constants))
# mask output
flat_output = nest.flatten(output)
flat_mask_output = (flat_zero_output if zero_output_for_mask
else nest.flatten(prev_output))
flat_new_output = compute_masked_output(mask_t, flat_output,
flat_mask_output)
# mask states
flat_state = nest.flatten(states)
flat_new_state = nest.flatten(new_states)
for state, new_state in zip(flat_state, flat_new_state):
if isinstance(new_state, ops.Tensor):
new_state.set_shape(state.shape)
flat_final_state = compute_masked_output(mask_t, flat_new_state,
flat_state)
new_states = nest.pack_sequence_as(new_states, flat_final_state)
output_ta_t = tuple(
ta.write(time, out)
for ta, out in zip(output_ta_t, flat_new_output))
return (time + 1, output_ta_t,
tuple(flat_new_output)) + tuple(new_states)
final_outputs = control_flow_ops.while_loop(
body=_step,
loop_vars=(time, output_ta, flat_zero_output) + states,
**while_loop_kwargs)
# Skip final_outputs[2] which is the output for final timestep.
new_states = final_outputs[3:]
else:
def _step(time, output_ta_t, *states):
"""RNN step function.
Arguments:
time: Current timestep value.
output_ta_t: TensorArray.
*states: List of states.
Returns:
Tuple: `(time + 1,output_ta_t) + tuple(new_states)`
"""
current_input = tuple(ta.read(time) for ta in input_ta)
current_input = nest.pack_sequence_as(inputs, current_input)
output, new_states = step_function(current_input,
tuple(states) + tuple(constants))
flat_state = nest.flatten(states)
flat_new_state = nest.flatten(new_states)
for state, new_state in zip(flat_state, flat_new_state):
if isinstance(new_state, ops.Tensor):
new_state.set_shape(state.shape)
flat_output = nest.flatten(output)
output_ta_t = tuple(
ta.write(time, out) for ta, out in zip(output_ta_t, flat_output))
new_states = nest.pack_sequence_as(initial_states, flat_new_state)
return (time + 1, output_ta_t) + tuple(new_states)
final_outputs = control_flow_ops.while_loop(
body=_step,
loop_vars=(time, output_ta) + states,
**while_loop_kwargs)
new_states = final_outputs[2:]
output_ta = final_outputs[1]
outputs = tuple(o.stack() for o in output_ta)
last_output = tuple(o[-1] for o in outputs)
outputs = nest.pack_sequence_as(output_time_zero, outputs)
last_output = nest.pack_sequence_as(output_time_zero, last_output)
# static shape inference
def set_shape(output_):
if isinstance(output_, ops.Tensor):
shape = output_.shape.as_list()
shape[0] = time_steps
shape[1] = batch
output_.set_shape(shape)
return output_
outputs = nest.map_structure(set_shape, outputs)
if not time_major:
outputs = nest.map_structure(swap_batch_timestep, outputs)
return last_output, outputs, new_states
@keras_export('keras.backend.switch')
@dispatch.add_dispatch_support
def switch(condition, then_expression, else_expression):
"""Switches between two operations depending on a scalar value.
Note that both `then_expression` and `else_expression`
should be symbolic tensors of the *same shape*.
Arguments:
condition: tensor (`int` or `bool`).
then_expression: either a tensor, or a callable that returns a tensor.
else_expression: either a tensor, or a callable that returns a tensor.
Returns:
The selected tensor.
Raises:
ValueError: If rank of `condition` is greater than rank of expressions.
"""
if condition.dtype != dtypes_module.bool:
condition = math_ops.cast(condition, 'bool')
cond_ndim = ndim(condition)
if not cond_ndim:
if not callable(then_expression):
def then_expression_fn():
return then_expression
else:
then_expression_fn = then_expression
if not callable(else_expression):
def else_expression_fn():
return else_expression
else:
else_expression_fn = else_expression
x = control_flow_ops.cond(condition, then_expression_fn, else_expression_fn)
else:
# tf.where needs its condition tensor
# to be the same shape as its two
# result tensors
if callable(then_expression):
then_expression = then_expression()
if callable(else_expression):
else_expression = else_expression()
expr_ndim = ndim(then_expression)
if cond_ndim > expr_ndim:
raise ValueError('Rank of `condition` should be less than or'
' equal to rank of `then_expression` and '
'`else_expression`. ndim(condition)=' + str(cond_ndim) +
', ndim(then_expression)'
'=' + str(expr_ndim))
if cond_ndim > 1:
ndim_diff = expr_ndim - cond_ndim
cond_shape = array_ops.concat(
[array_ops.shape(condition), [1] * ndim_diff], axis=0)
condition = array_ops.reshape(condition, cond_shape)
expr_shape = array_ops.shape(then_expression)
shape_diff = expr_shape - cond_shape
tile_shape = array_ops.where_v2(shape_diff > 0, expr_shape,
array_ops.ones_like(expr_shape))
condition = array_ops.tile(condition, tile_shape)
x = array_ops.where_v2(condition, then_expression, else_expression)
return x
@keras_export('keras.backend.in_train_phase')
def in_train_phase(x, alt, training=None):
"""Selects `x` in train phase, and `alt` otherwise.
Note that `alt` should have the *same shape* as `x`.
Arguments:
x: What to return in train phase
(tensor or callable that returns a tensor).
alt: What to return otherwise
(tensor or callable that returns a tensor).
training: Optional scalar tensor
(or Python boolean, or Python integer)
specifying the learning phase.
Returns:
Either `x` or `alt` based on the `training` flag.
the `training` flag defaults to `K.learning_phase()`.
"""
from tensorflow.python.keras.engine import base_layer_utils # pylint: disable=g-import-not-at-top
if training is None:
training = base_layer_utils.call_context().training
if training is None:
training = learning_phase()
# TODO(b/138862903): Handle the case when training is tensor.
if not tensor_util.is_tensor(training):
if training == 1 or training is True:
if callable(x):
return x()
else:
return x
elif training == 0 or training is False:
if callable(alt):
return alt()
else:
return alt
# else: assume learning phase is a placeholder tensor.
x = switch(training, x, alt)
return x
@keras_export('keras.backend.in_test_phase')
def in_test_phase(x, alt, training=None):
"""Selects `x` in test phase, and `alt` otherwise.
Note that `alt` should have the *same shape* as `x`.
Arguments:
x: What to return in test phase
(tensor or callable that returns a tensor).
alt: What to return otherwise
(tensor or callable that returns a tensor).
training: Optional scalar tensor
(or Python boolean, or Python integer)
specifying the learning phase.
Returns:
Either `x` or `alt` based on `K.learning_phase`.
"""
return in_train_phase(alt, x, training=training)
# NN OPERATIONS
@keras_export('keras.backend.relu')
@dispatch.add_dispatch_support
def relu(x, alpha=0., max_value=None, threshold=0):
"""Rectified linear unit.
With default values, it returns element-wise `max(x, 0)`.
Otherwise, it follows:
`f(x) = max_value` for `x >= max_value`,
`f(x) = x` for `threshold <= x < max_value`,
`f(x) = alpha * (x - threshold)` otherwise.
Arguments:
x: A tensor or variable.
alpha: A scalar, slope of negative section (default=`0.`).
max_value: float. Saturation threshold.
threshold: float. Threshold value for thresholded activation.
Returns:
A tensor.
"""
if alpha != 0.:
if max_value is None and threshold == 0:
return nn.leaky_relu(x, alpha=alpha)
if threshold != 0:
negative_part = nn.relu(-x + threshold)
else:
negative_part = nn.relu(-x)
clip_max = max_value is not None
if threshold != 0:
# computes x for x > threshold else 0
x = x * math_ops.cast(math_ops.greater(x, threshold), floatx())
elif max_value == 6:
# if no threshold, then can use nn.relu6 native TF op for performance
x = nn.relu6(x)
clip_max = False
else:
x = nn.relu(x)
if clip_max:
max_value = _constant_to_tensor(max_value, x.dtype.base_dtype)
zero = _constant_to_tensor(0, x.dtype.base_dtype)
x = clip_ops.clip_by_value(x, zero, max_value)
if alpha != 0.:
alpha = _to_tensor(alpha, x.dtype.base_dtype)
x -= alpha * negative_part
return x
@keras_export('keras.backend.elu')
@dispatch.add_dispatch_support
def elu(x, alpha=1.):
"""Exponential linear unit.
Arguments:
x: A tensor or variable to compute the activation function for.
alpha: A scalar, slope of negative section.
Returns:
A tensor.
"""
res = nn.elu(x)
if alpha == 1:
return res
else:
return array_ops.where_v2(x > 0, res, alpha * res)
@keras_export('keras.backend.softmax')
@dispatch.add_dispatch_support
def softmax(x, axis=-1):
"""Softmax of a tensor.
Arguments:
x: A tensor or variable.
axis: The dimension softmax would be performed on.
The default is -1 which indicates the last dimension.
Returns:
A tensor.
"""
return nn.softmax(x, axis=axis)
@keras_export('keras.backend.softplus')
@dispatch.add_dispatch_support
def softplus(x):
"""Softplus of a tensor.
Arguments:
x: A tensor or variable.
Returns:
A tensor.
"""
return nn.softplus(x)
@keras_export('keras.backend.softsign')
@dispatch.add_dispatch_support
def softsign(x):
"""Softsign of a tensor.
Arguments:
x: A tensor or variable.
Returns:
A tensor.
"""
return nn.softsign(x)
@keras_export('keras.backend.categorical_crossentropy')
@dispatch.add_dispatch_support
def categorical_crossentropy(target, output, from_logits=False, axis=-1):
"""Categorical crossentropy between an output tensor and a target tensor.
Arguments:
target: A tensor of the same shape as `output`.
output: A tensor resulting from a softmax
(unless `from_logits` is True, in which
case `output` is expected to be the logits).
from_logits: Boolean, whether `output` is the
result of a softmax, or is a tensor of logits.
axis: Int specifying the channels axis. `axis=-1` corresponds to data
format `channels_last', and `axis=1` corresponds to data format
`channels_first`.
Returns:
Output tensor.
Raises:
ValueError: if `axis` is neither -1 nor one of the axes of `output`.
Example:
>>> a = tf.constant([1., 0., 0., 0., 1., 0., 0., 0., 1.], shape=[3,3])
>>> print(a)
tf.Tensor(
[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]], shape=(3, 3), dtype=float32)
>>> b = tf.constant([.9, .05, .05, .5, .89, .6, .05, .01, .94], shape=[3,3])
>>> print(b)
tf.Tensor(
[[0.9 0.05 0.05]
[0.5 0.89 0.6 ]
[0.05 0.01 0.94]], shape=(3, 3), dtype=float32)
>>> loss = tf.keras.backend.categorical_crossentropy(a, b)
>>> print(np.around(loss, 5))
[0.10536 0.80467 0.06188]
>>> loss = tf.keras.backend.categorical_crossentropy(a, a)
>>> print(np.around(loss, 5))
[0. 0. 0.]
"""
target = ops.convert_to_tensor_v2(target)
output = ops.convert_to_tensor_v2(output)
target.shape.assert_is_compatible_with(output.shape)
if from_logits:
return nn.softmax_cross_entropy_with_logits_v2(
labels=target, logits=output, axis=axis)
if (not isinstance(output, (ops.EagerTensor, variables_module.Variable)) and
output.op.type == 'Softmax') and not hasattr(output, '_keras_history'):
# When softmax activation function is used for output operation, we
# use logits from the softmax function directly to compute loss in order
# to prevent collapsing zero when training.
# See b/117284466
assert len(output.op.inputs) == 1
output = output.op.inputs[0]
return nn.softmax_cross_entropy_with_logits_v2(
labels=target, logits=output, axis=axis)
# scale preds so that the class probas of each sample sum to 1
output = output / math_ops.reduce_sum(output, axis, True)
# Compute cross entropy from probabilities.
epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype)
output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_)
return -math_ops.reduce_sum(target * math_ops.log(output), axis)
@keras_export('keras.backend.sparse_categorical_crossentropy')
@dispatch.add_dispatch_support
def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1):
"""Categorical crossentropy with integer targets.
Arguments:
target: An integer tensor.
output: A tensor resulting from a softmax
(unless `from_logits` is True, in which
case `output` is expected to be the logits).
from_logits: Boolean, whether `output` is the
result of a softmax, or is a tensor of logits.
axis: Int specifying the channels axis. `axis=-1` corresponds to data
format `channels_last', and `axis=1` corresponds to data format
`channels_first`.
Returns:
Output tensor.
Raises:
ValueError: if `axis` is neither -1 nor one of the axes of `output`.
"""
target = ops.convert_to_tensor_v2(target)
output = ops.convert_to_tensor_v2(output)
if (not from_logits and
not isinstance(output, (ops.EagerTensor, variables_module.Variable)) and
output.op.type == 'Softmax') and not hasattr(output, '_keras_history'):
# When softmax activation function is used for output operation, we
# use logits from the softmax function directly to compute loss in order
# to prevent collapsing zero when training.
# See b/117284466
assert len(output.op.inputs) == 1
output = output.op.inputs[0]
from_logits = True
if not from_logits:
epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype)
output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
output = math_ops.log(output)
if isinstance(output.shape, (tuple, list)):
output_rank = len(output.shape)
else:
output_rank = output.shape.ndims
if output_rank is not None:
axis %= output_rank
if axis != output_rank - 1:
permutation = list(
itertools.chain(range(axis), range(axis + 1, output_rank), [axis]))
output = array_ops.transpose(output, perm=permutation)
elif axis != -1:
raise ValueError(
'Cannot compute sparse categorical crossentropy with `axis={}` on an '
'output tensor with unknown rank'.format(axis))
target = cast(target, 'int64')
# Try to adjust the shape so that rank of labels = rank of logits - 1.
output_shape = array_ops.shape_v2(output)
target_rank = target.shape.ndims
update_shape = (
target_rank is not None and output_rank is not None and
target_rank != output_rank - 1)
if update_shape:
target = flatten(target)
output = array_ops.reshape(output, [-1, output_shape[-1]])
if py_any(_is_symbolic_tensor(v) for v in [target, output]):
with get_graph().as_default():
res = nn.sparse_softmax_cross_entropy_with_logits_v2(
labels=target, logits=output)
else:
res = nn.sparse_softmax_cross_entropy_with_logits_v2(
labels=target, logits=output)
if update_shape and output_rank >= 3:
# If our output includes timesteps or spatial dimensions we need to reshape
return array_ops.reshape(res, output_shape[:-1])
else:
return res
@keras_export('keras.backend.binary_crossentropy')
@dispatch.add_dispatch_support
def binary_crossentropy(target, output, from_logits=False):
"""Binary crossentropy between an output tensor and a target tensor.
Arguments:
target: A tensor with the same shape as `output`.
output: A tensor.
from_logits: Whether `output` is expected to be a logits tensor.
By default, we consider that `output`
encodes a probability distribution.
Returns:
A tensor.
"""
target = ops.convert_to_tensor_v2(target)
output = ops.convert_to_tensor_v2(output)
if from_logits:
return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)
if (not isinstance(output, (ops.EagerTensor, variables_module.Variable)) and
output.op.type == 'Sigmoid') and not hasattr(output, '_keras_history'):
# When sigmoid activation function is used for output operation, we
# use logits from the sigmoid function directly to compute loss in order
# to prevent collapsing zero when training.
assert len(output.op.inputs) == 1
output = output.op.inputs[0]
return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)
epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype)
output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_)
# Compute cross entropy from probabilities.
bce = target * math_ops.log(output + epsilon())
bce += (1 - target) * math_ops.log(1 - output + epsilon())
return -bce
@keras_export('keras.backend.sigmoid')
@dispatch.add_dispatch_support
def sigmoid(x):
"""Element-wise sigmoid.
Arguments:
x: A tensor or variable.
Returns:
A tensor.
"""
return nn.sigmoid(x)
@keras_export('keras.backend.hard_sigmoid')
@dispatch.add_dispatch_support
def hard_sigmoid(x):
"""Segment-wise linear approximation of sigmoid.
Faster than sigmoid.
Returns `0.` if `x < -2.5`, `1.` if `x > 2.5`.
In `-2.5 <= x <= 2.5`, returns `0.2 * x + 0.5`.
Arguments:
x: A tensor or variable.
Returns:
A tensor.
"""
point_two = _constant_to_tensor(0.2, x.dtype.base_dtype)
point_five = _constant_to_tensor(0.5, x.dtype.base_dtype)
x = math_ops.mul(x, point_two)
x = math_ops.add(x, point_five)
x = clip_ops.clip_by_value(x, 0., 1.)
return x
@keras_export('keras.backend.tanh')
@dispatch.add_dispatch_support
def tanh(x):
"""Element-wise tanh.
Arguments:
x: A tensor or variable.
Returns:
A tensor.
"""
return nn.tanh(x)
@keras_export('keras.backend.dropout')
@dispatch.add_dispatch_support
def dropout(x, level, noise_shape=None, seed=None):
"""Sets entries in `x` to zero at random, while scaling the entire tensor.
Arguments:
x: tensor
level: fraction of the entries in the tensor
that will be set to 0.
noise_shape: shape for randomly generated keep/drop flags,
must be broadcastable to the shape of `x`
seed: random seed to ensure determinism.
Returns:
A tensor.
"""
if seed is None:
seed = np.random.randint(10e6)
return nn.dropout_v2(x, rate=level, noise_shape=noise_shape, seed=seed)
@keras_export('keras.backend.l2_normalize')
@dispatch.add_dispatch_support
def l2_normalize(x, axis=None):
"""Normalizes a tensor wrt the L2 norm alongside the specified axis.
Arguments:
x: Tensor or variable.
axis: axis along which to perform normalization.
Returns:
A tensor.
"""
return nn.l2_normalize(x, axis=axis)
@keras_export('keras.backend.in_top_k')
@dispatch.add_dispatch_support
def in_top_k(predictions, targets, k):
"""Returns whether the `targets` are in the top `k` `predictions`.
Arguments:
predictions: A tensor of shape `(batch_size, classes)` and type `float32`.
targets: A 1D tensor of length `batch_size` and type `int32` or `int64`.
k: An `int`, number of top elements to consider.
Returns:
A 1D tensor of length `batch_size` and type `bool`.
`output[i]` is `True` if `predictions[i, targets[i]]` is within top-`k`
values of `predictions[i]`.
"""
return nn.in_top_k(predictions, targets, k)
# CONVOLUTIONS
def _preprocess_conv1d_input(x, data_format):
"""Transpose and cast the input before the conv1d.
Arguments:
x: input tensor.
data_format: string, `"channels_last"` or `"channels_first"`.
Returns:
A tensor.
"""
tf_data_format = 'NWC' # to pass TF Conv2dNative operations
if data_format == 'channels_first':
if not _has_nchw_support():
x = array_ops.transpose(x, (0, 2, 1)) # NCW -> NWC
else:
tf_data_format = 'NCW'
return x, tf_data_format
def _preprocess_conv2d_input(x, data_format, force_transpose=False):
"""Transpose and cast the input before the conv2d.
Arguments:
x: input tensor.
data_format: string, `"channels_last"` or `"channels_first"`.
force_transpose: Boolean. If True, the input will always be transposed
from NCHW to NHWC if `data_format` is `"channels_first"`.
If False, the transposition only occurs on CPU (GPU ops are
assumed to support NCHW).
Returns:
A tensor.
"""
tf_data_format = 'NHWC'
if data_format == 'channels_first':
if not _has_nchw_support() or force_transpose:
x = array_ops.transpose(x, (0, 2, 3, 1)) # NCHW -> NHWC
else:
tf_data_format = 'NCHW'
return x, tf_data_format
def _preprocess_conv3d_input(x, data_format):
"""Transpose and cast the input before the conv3d.
Arguments:
x: input tensor.
data_format: string, `"channels_last"` or `"channels_first"`.
Returns:
A tensor.
"""
tf_data_format = 'NDHWC'
if data_format == 'channels_first':
if not _has_nchw_support():
x = array_ops.transpose(x, (0, 2, 3, 4, 1))
else:
tf_data_format = 'NCDHW'
return x, tf_data_format
def _preprocess_padding(padding):
"""Convert keras' padding to TensorFlow's padding.
Arguments:
padding: string, one of 'same' , 'valid'
Returns:
a string, one of 'SAME', 'VALID'.
Raises:
ValueError: if invalid `padding'`
"""
if padding == 'same':
padding = 'SAME'
elif padding == 'valid':
padding = 'VALID'
else:
raise ValueError('Invalid padding: ' + str(padding))
return padding
@keras_export('keras.backend.conv1d')
@dispatch.add_dispatch_support
def conv1d(x,
kernel,
strides=1,
padding='valid',
data_format=None,
dilation_rate=1):
"""1D convolution.
Arguments:
x: Tensor or variable.
kernel: kernel tensor.
strides: stride integer.
padding: string, `"same"`, `"causal"` or `"valid"`.
data_format: string, one of "channels_last", "channels_first".
dilation_rate: integer dilate rate.
Returns:
A tensor, result of 1D convolution.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
kernel_shape = kernel.shape.as_list()
if padding == 'causal':
# causal (dilated) convolution:
left_pad = dilation_rate * (kernel_shape[0] - 1)
x = temporal_padding(x, (left_pad, 0))
padding = 'valid'
padding = _preprocess_padding(padding)
x, tf_data_format = _preprocess_conv1d_input(x, data_format)
x = nn.convolution(
input=x,
filter=kernel,
dilation_rate=dilation_rate,
strides=strides,
padding=padding,
data_format=tf_data_format)
if data_format == 'channels_first' and tf_data_format == 'NWC':
x = array_ops.transpose(x, (0, 2, 1)) # NWC -> NCW
return x
@keras_export('keras.backend.conv2d')
@dispatch.add_dispatch_support
def conv2d(x,
kernel,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1)):
"""2D convolution.
Arguments:
x: Tensor or variable.
kernel: kernel tensor.
strides: strides tuple.
padding: string, `"same"` or `"valid"`.
data_format: `"channels_last"` or `"channels_first"`.
dilation_rate: tuple of 2 integers.
Returns:
A tensor, result of 2D convolution.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
x, tf_data_format = _preprocess_conv2d_input(x, data_format)
padding = _preprocess_padding(padding)
x = nn.convolution(
input=x,
filter=kernel,
dilation_rate=dilation_rate,
strides=strides,
padding=padding,
data_format=tf_data_format)
if data_format == 'channels_first' and tf_data_format == 'NHWC':
x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW
return x
@keras_export('keras.backend.conv2d_transpose')
@dispatch.add_dispatch_support
def conv2d_transpose(x,
kernel,
output_shape,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1)):
"""2D deconvolution (i.e.
transposed convolution).
Arguments:
x: Tensor or variable.
kernel: kernel tensor.
output_shape: 1D int tensor for the output shape.
strides: strides tuple.
padding: string, `"same"` or `"valid"`.
data_format: string, `"channels_last"` or `"channels_first"`.
dilation_rate: Tuple of 2 integers.
Returns:
A tensor, result of transposed 2D convolution.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
# `atrous_conv2d_transpose` only supports NHWC format, even on GPU.
if data_format == 'channels_first' and dilation_rate != (1, 1):
force_transpose = True
else:
force_transpose = False
x, tf_data_format = _preprocess_conv2d_input(x, data_format, force_transpose)
if data_format == 'channels_first' and tf_data_format == 'NHWC':
output_shape = (output_shape[0], output_shape[2], output_shape[3],
output_shape[1])
if output_shape[0] is None:
output_shape = (shape(x)[0],) + tuple(output_shape[1:])
if isinstance(output_shape, (tuple, list)):
output_shape = array_ops.stack(list(output_shape))
padding = _preprocess_padding(padding)
if tf_data_format == 'NHWC':
strides = (1,) + strides + (1,)
else:
strides = (1, 1) + strides
if dilation_rate == (1, 1):
x = nn.conv2d_transpose(x, kernel, output_shape, strides,
padding=padding,
data_format=tf_data_format)
else:
assert dilation_rate[0] == dilation_rate[1]
x = nn.atrous_conv2d_transpose(
x,
kernel,
output_shape,
rate=dilation_rate[0],
padding=padding)
if data_format == 'channels_first' and tf_data_format == 'NHWC':
x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW
return x
def separable_conv1d(x,
depthwise_kernel,
pointwise_kernel,
strides=1,
padding='valid',
data_format=None,
dilation_rate=1):
"""1D convolution with separable filters.
Arguments:
x: input tensor
depthwise_kernel: convolution kernel for the depthwise convolution.
pointwise_kernel: kernel for the 1x1 convolution.
strides: stride integer.
padding: string, `"same"` or `"valid"`.
data_format: string, `"channels_last"` or `"channels_first"`.
dilation_rate: integer dilation rate.
Returns:
Output tensor.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
if isinstance(strides, int):
strides = (strides,)
if isinstance(dilation_rate, int):
dilation_rate = (dilation_rate,)
x, tf_data_format = _preprocess_conv1d_input(x, data_format)
padding = _preprocess_padding(padding)
if not isinstance(strides, tuple):
strides = tuple(strides)
if tf_data_format == 'NWC':
spatial_start_dim = 1
strides = (1,) + strides * 2 + (1,)
else:
spatial_start_dim = 2
strides = (1, 1) + strides * 2
x = array_ops.expand_dims(x, spatial_start_dim)
depthwise_kernel = array_ops.expand_dims(depthwise_kernel, 0)
pointwise_kernel = array_ops.expand_dims(pointwise_kernel, 0)
dilation_rate = (1,) + dilation_rate
x = nn.separable_conv2d(
x,
depthwise_kernel,
pointwise_kernel,
strides=strides,
padding=padding,
rate=dilation_rate,
data_format=tf_data_format)
x = array_ops.squeeze(x, [spatial_start_dim])
if data_format == 'channels_first' and tf_data_format == 'NWC':
x = array_ops.transpose(x, (0, 2, 1)) # NWC -> NCW
return x
@keras_export('keras.backend.separable_conv2d')
@dispatch.add_dispatch_support
def separable_conv2d(x,
depthwise_kernel,
pointwise_kernel,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1)):
"""2D convolution with separable filters.
Arguments:
x: input tensor
depthwise_kernel: convolution kernel for the depthwise convolution.
pointwise_kernel: kernel for the 1x1 convolution.
strides: strides tuple (length 2).
padding: string, `"same"` or `"valid"`.
data_format: string, `"channels_last"` or `"channels_first"`.
dilation_rate: tuple of integers,
dilation rates for the separable convolution.
Returns:
Output tensor.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
ValueError: if `strides` is not a tuple of 2 integers.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
if len(strides) != 2:
raise ValueError('`strides` must be a tuple of 2 integers.')
x, tf_data_format = _preprocess_conv2d_input(x, data_format)
padding = _preprocess_padding(padding)
if not isinstance(strides, tuple):
strides = tuple(strides)
if tf_data_format == 'NHWC':
strides = (1,) + strides + (1,)
else:
strides = (1, 1) + strides
x = nn.separable_conv2d(
x,
depthwise_kernel,
pointwise_kernel,
strides=strides,
padding=padding,
rate=dilation_rate,
data_format=tf_data_format)
if data_format == 'channels_first' and tf_data_format == 'NHWC':
x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW
return x
@keras_export('keras.backend.depthwise_conv2d')
@dispatch.add_dispatch_support
def depthwise_conv2d(x,
depthwise_kernel,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1)):
"""2D convolution with separable filters.
Arguments:
x: input tensor
depthwise_kernel: convolution kernel for the depthwise convolution.
strides: strides tuple (length 2).
padding: string, `"same"` or `"valid"`.
data_format: string, `"channels_last"` or `"channels_first"`.
dilation_rate: tuple of integers,
dilation rates for the separable convolution.
Returns:
Output tensor.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
x, tf_data_format = _preprocess_conv2d_input(x, data_format)
padding = _preprocess_padding(padding)
if tf_data_format == 'NHWC':
strides = (1,) + strides + (1,)
else:
strides = (1, 1) + strides
x = nn.depthwise_conv2d(
x,
depthwise_kernel,
strides=strides,
padding=padding,
rate=dilation_rate,
data_format=tf_data_format)
if data_format == 'channels_first' and tf_data_format == 'NHWC':
x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW
return x
@keras_export('keras.backend.conv3d')
@dispatch.add_dispatch_support
def conv3d(x,
kernel,
strides=(1, 1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1, 1)):
"""3D convolution.
Arguments:
x: Tensor or variable.
kernel: kernel tensor.
strides: strides tuple.
padding: string, `"same"` or `"valid"`.
data_format: string, `"channels_last"` or `"channels_first"`.
dilation_rate: tuple of 3 integers.
Returns:
A tensor, result of 3D convolution.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
x, tf_data_format = _preprocess_conv3d_input(x, data_format)
padding = _preprocess_padding(padding)
x = nn.convolution(
input=x,
filter=kernel,
dilation_rate=dilation_rate,
strides=strides,
padding=padding,
data_format=tf_data_format)
if data_format == 'channels_first' and tf_data_format == 'NDHWC':
x = array_ops.transpose(x, (0, 4, 1, 2, 3))
return x
def conv3d_transpose(x,
kernel,
output_shape,
strides=(1, 1, 1),
padding='valid',
data_format=None):
"""3D deconvolution (i.e.
transposed convolution).
Arguments:
x: input tensor.
kernel: kernel tensor.
output_shape: 1D int tensor for the output shape.
strides: strides tuple.
padding: string, "same" or "valid".
data_format: string, `"channels_last"` or `"channels_first"`.
Returns:
A tensor, result of transposed 3D convolution.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
if isinstance(output_shape, (tuple, list)):
output_shape = array_ops.stack(output_shape)
x, tf_data_format = _preprocess_conv3d_input(x, data_format)
if data_format == 'channels_first' and tf_data_format == 'NDHWC':
output_shape = (output_shape[0], output_shape[2], output_shape[3],
output_shape[4], output_shape[1])
if output_shape[0] is None:
output_shape = (array_ops.shape(x)[0],) + tuple(output_shape[1:])
output_shape = array_ops.stack(list(output_shape))
padding = _preprocess_padding(padding)
if tf_data_format == 'NDHWC':
strides = (1,) + strides + (1,)
else:
strides = (1, 1) + strides
x = nn.conv3d_transpose(
x,
kernel,
output_shape,
strides,
padding=padding,
data_format=tf_data_format)
if data_format == 'channels_first' and tf_data_format == 'NDHWC':
x = array_ops.transpose(x, (0, 4, 1, 2, 3))
return x
@keras_export('keras.backend.pool2d')
@dispatch.add_dispatch_support
def pool2d(x,
pool_size,
strides=(1, 1),
padding='valid',
data_format=None,
pool_mode='max'):
"""2D Pooling.
Arguments:
x: Tensor or variable.
pool_size: tuple of 2 integers.
strides: tuple of 2 integers.
padding: string, `"same"` or `"valid"`.
data_format: string, `"channels_last"` or `"channels_first"`.
pool_mode: string, `"max"` or `"avg"`.
Returns:
A tensor, result of 2D pooling.
Raises:
ValueError: if `data_format` is neither `"channels_last"` or
`"channels_first"`.
ValueError: if `pool_size` is not a tuple of 2 integers.
ValueError: if `strides` is not a tuple of 2 integers.
ValueError: if `pool_mode` is neither `"max"` or `"avg"`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
if len(pool_size) != 2:
raise ValueError('`pool_size` must be a tuple of 2 integers.')
if len(strides) != 2:
raise ValueError('`strides` must be a tuple of 2 integers.')
x, tf_data_format = _preprocess_conv2d_input(x, data_format)
padding = _preprocess_padding(padding)
if tf_data_format == 'NHWC':
strides = (1,) + strides + (1,)
pool_size = (1,) + pool_size + (1,)
else:
strides = (1, 1) + strides
pool_size = (1, 1) + pool_size
if pool_mode == 'max':
x = nn.max_pool(
x, pool_size, strides, padding=padding, data_format=tf_data_format)
elif pool_mode == 'avg':
x = nn.avg_pool(
x, pool_size, strides, padding=padding, data_format=tf_data_format)
else:
raise ValueError('Invalid pooling mode: ' + str(pool_mode))
if data_format == 'channels_first' and tf_data_format == 'NHWC':
x = array_ops.transpose(x, (0, 3, 1, 2)) # NHWC -> NCHW
return x
@keras_export('keras.backend.pool3d')
@dispatch.add_dispatch_support
def pool3d(x,
pool_size,
strides=(1, 1, 1),
padding='valid',
data_format=None,
pool_mode='max'):
"""3D Pooling.
Arguments:
x: Tensor or variable.
pool_size: tuple of 3 integers.
strides: tuple of 3 integers.
padding: string, `"same"` or `"valid"`.
data_format: string, `"channels_last"` or `"channels_first"`.
pool_mode: string, `"max"` or `"avg"`.
Returns:
A tensor, result of 3D pooling.
Raises:
ValueError: if `data_format` is neither `"channels_last"` or
`"channels_first"`.
ValueError: if `pool_mode` is neither `"max"` or `"avg"`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
x, tf_data_format = _preprocess_conv3d_input(x, data_format)
padding = _preprocess_padding(padding)
if tf_data_format == 'NDHWC':
strides = (1,) + strides + (1,)
pool_size = (1,) + pool_size + (1,)
else:
strides = (1, 1) + strides
pool_size = (1, 1) + pool_size
if pool_mode == 'max':
x = nn.max_pool3d(
x, pool_size, strides, padding=padding, data_format=tf_data_format)
elif pool_mode == 'avg':
x = nn.avg_pool3d(
x, pool_size, strides, padding=padding, data_format=tf_data_format)
else:
raise ValueError('Invalid pooling mode: ' + str(pool_mode))
if data_format == 'channels_first' and tf_data_format == 'NDHWC':
x = array_ops.transpose(x, (0, 4, 1, 2, 3))
return x
def local_conv(inputs,
kernel,
kernel_size,
strides,
output_shape,
data_format=None):
"""Apply N-D convolution with un-shared weights.
Arguments:
inputs: (N+2)-D tensor with shape
(batch_size, channels_in, d_in1, ..., d_inN)
if data_format='channels_first', or
(batch_size, d_in1, ..., d_inN, channels_in)
if data_format='channels_last'.
kernel: the unshared weight for N-D convolution,
with shape (output_items, feature_dim, channels_out), where
feature_dim = np.prod(kernel_size) * channels_in,
output_items = np.prod(output_shape).
kernel_size: a tuple of N integers, specifying the
spatial dimensions of the N-D convolution window.
strides: a tuple of N integers, specifying the strides
of the convolution along the spatial dimensions.
output_shape: a tuple of (d_out1, ..., d_outN) specifying the spatial
dimensionality of the output.
data_format: string, "channels_first" or "channels_last".
Returns:
An (N+2)-D tensor with shape:
(batch_size, channels_out) + output_shape
if data_format='channels_first', or:
(batch_size,) + output_shape + (channels_out,)
if data_format='channels_last'.
Raises:
ValueError: if `data_format` is neither
`channels_last` nor `channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
kernel_shape = int_shape(kernel)
feature_dim = kernel_shape[1]
channels_out = kernel_shape[-1]
ndims = len(output_shape)
spatial_dimensions = list(range(ndims))
xs = []
output_axes_ticks = [range(axis_max) for axis_max in output_shape]
for position in itertools.product(*output_axes_ticks):
slices = [slice(None)]
if data_format == 'channels_first':
slices.append(slice(None))
slices.extend(
slice(position[d] * strides[d], position[d] * strides[d] +
kernel_size[d]) for d in spatial_dimensions)
if data_format == 'channels_last':
slices.append(slice(None))
xs.append(reshape(inputs[slices], (1, -1, feature_dim)))
x_aggregate = concatenate(xs, axis=0)
output = batch_dot(x_aggregate, kernel)
output = reshape(output, output_shape + (-1, channels_out))
if data_format == 'channels_first':
permutation = [ndims, ndims + 1] + spatial_dimensions
else:
permutation = [ndims] + spatial_dimensions + [ndims + 1]
return permute_dimensions(output, permutation)
@keras_export('keras.backend.local_conv1d')
@dispatch.add_dispatch_support
def local_conv1d(inputs, kernel, kernel_size, strides, data_format=None):
"""Apply 1D conv with un-shared weights.
Arguments:
inputs: 3D tensor with shape:
(batch_size, steps, input_dim)
if data_format is "channels_last" or
(batch_size, input_dim, steps)
if data_format is "channels_first".
kernel: the unshared weight for convolution,
with shape (output_length, feature_dim, filters).
kernel_size: a tuple of a single integer,
specifying the length of the 1D convolution window.
strides: a tuple of a single integer,
specifying the stride length of the convolution.
data_format: the data format, channels_first or channels_last.
Returns:
A 3d tensor with shape:
(batch_size, output_length, filters)
if data_format='channels_first'
or 3D tensor with shape:
(batch_size, filters, output_length)
if data_format='channels_last'.
"""
output_shape = (kernel.shape[0],)
return local_conv(inputs,
kernel,
kernel_size,
strides,
output_shape,
data_format)
@keras_export('keras.backend.local_conv2d')
@dispatch.add_dispatch_support
def local_conv2d(inputs,
kernel,
kernel_size,
strides,
output_shape,
data_format=None):
"""Apply 2D conv with un-shared weights.
Arguments:
inputs: 4D tensor with shape:
(batch_size, filters, new_rows, new_cols)
if data_format='channels_first'
or 4D tensor with shape:
(batch_size, new_rows, new_cols, filters)
if data_format='channels_last'.
kernel: the unshared weight for convolution,
with shape (output_items, feature_dim, filters).
kernel_size: a tuple of 2 integers, specifying the
width and height of the 2D convolution window.
strides: a tuple of 2 integers, specifying the strides
of the convolution along the width and height.
output_shape: a tuple with (output_row, output_col).
data_format: the data format, channels_first or channels_last.
Returns:
A 4D tensor with shape:
(batch_size, filters, new_rows, new_cols)
if data_format='channels_first'
or 4D tensor with shape:
(batch_size, new_rows, new_cols, filters)
if data_format='channels_last'.
"""
return local_conv(inputs,
kernel,
kernel_size,
strides,
output_shape,
data_format)
@keras_export('keras.backend.bias_add')
@dispatch.add_dispatch_support
def bias_add(x, bias, data_format=None):
"""Adds a bias vector to a tensor.
Arguments:
x: Tensor or variable.
bias: Bias tensor to add.
data_format: string, `"channels_last"` or `"channels_first"`.
Returns:
Output tensor.
Raises:
ValueError: In one of the two cases below:
1. invalid `data_format` argument.
2. invalid bias shape.
the bias should be either a vector or
a tensor with ndim(x) - 1 dimension
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format: ' + str(data_format))
bias_shape = int_shape(bias)
if len(bias_shape) != 1 and len(bias_shape) != ndim(x) - 1:
raise ValueError(
'Unexpected bias dimensions %d, expect to be 1 or %d dimensions' %
(len(bias_shape), ndim(x)))
if len(bias_shape) == 1:
if data_format == 'channels_first':
return nn.bias_add(x, bias, data_format='NCHW')
return nn.bias_add(x, bias, data_format='NHWC')
if ndim(x) in (3, 4, 5):
if data_format == 'channels_first':
bias_reshape_axis = (1, bias_shape[-1]) + bias_shape[:-1]
return x + reshape(bias, bias_reshape_axis)
return x + reshape(bias, (1,) + bias_shape)
return nn.bias_add(x, bias)
# RANDOMNESS
@keras_export('keras.backend.random_normal')
@dispatch.add_dispatch_support
def random_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None):
"""Returns a tensor with normal distribution of values.
It is an alias to `tf.random.normal`.
Arguments:
shape: A tuple of integers, the shape of tensor to create.
mean: A float, the mean value of the normal distribution to draw samples.
Default to 0.0.
stddev: A float, the standard deviation of the normal distribution
to draw samples. Default to 1.0.
dtype: `tf.dtypes.DType`, dtype of returned tensor. Default to use Keras
backend dtype which is float32.
seed: Integer, random seed. Will use a random numpy integer when not
specified.
Returns:
A tensor with normal distribution of values.
Example:
>>> random_normal_tensor = tf.keras.backend.random_normal(shape=(2,3),
... mean=0.0, stddev=1.0)
>>> random_normal_tensor
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=...,
dtype=float32)>
"""
if dtype is None:
dtype = floatx()
if seed is None:
seed = np.random.randint(10e6)
return random_ops.random_normal(
shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed)
@keras_export('keras.backend.random_uniform')
@dispatch.add_dispatch_support
def random_uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None):
"""Returns a tensor with uniform distribution of values.
Arguments:
shape: A tuple of integers, the shape of tensor to create.
minval: A float, lower boundary of the uniform distribution
to draw samples.
maxval: A float, upper boundary of the uniform distribution
to draw samples.
dtype: String, dtype of returned tensor.
seed: Integer, random seed.
Returns:
A tensor.
Example:
>>> random_uniform_tensor = tf.keras.backend.random_uniform(shape=(2,3),
... minval=0.0, maxval=1.0)
>>> random_uniform_tensor
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=...,
dtype=float32)>
"""
if dtype is None:
dtype = floatx()
if seed is None:
seed = np.random.randint(10e6)
return random_ops.random_uniform(
shape, minval=minval, maxval=maxval, dtype=dtype, seed=seed)
@deprecated(None, 'Use `tf.keras.backend.random_bernoulli` instead.')
@keras_export('keras.backend.random_binomial')
@dispatch.add_dispatch_support
def random_binomial(shape, p=0.0, dtype=None, seed=None):
"""Returns a tensor with random binomial distribution of values.
DEPRECATED, use `tf.keras.backend.random_bernoulli` instead.
The binomial distribution with parameters `n` and `p` is the probability
distribution of the number of successful Bernoulli process. Only supports
`n` = 1 for now.
Arguments:
shape: A tuple of integers, the shape of tensor to create.
p: A float, `0. <= p <= 1`, probability of binomial distribution.
dtype: String, dtype of returned tensor.
seed: Integer, random seed.
Returns:
A tensor.
Example:
>>> random_binomial_tensor = tf.keras.backend.random_binomial(shape=(2,3),
... p=0.5)
>>> random_binomial_tensor
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=...,
dtype=float32)>
"""
if dtype is None:
dtype = floatx()
if seed is None:
seed = np.random.randint(10e6)
return array_ops.where_v2(
random_ops.random_uniform(shape, dtype=dtype, seed=seed) <= p,
array_ops.ones(shape, dtype=dtype), array_ops.zeros(shape, dtype=dtype))
@keras_export('keras.backend.random_bernoulli')
@dispatch.add_dispatch_support
def random_bernoulli(shape, p=0.0, dtype=None, seed=None):
"""Returns a tensor with random bernoulli distribution of values.
Arguments:
shape: A tuple of integers, the shape of tensor to create.
p: A float, `0. <= p <= 1`, probability of bernoulli distribution.
dtype: String, dtype of returned tensor.
seed: Integer, random seed.
Returns:
A tensor.
"""
return random_binomial(shape, p, dtype, seed)
@keras_export('keras.backend.truncated_normal')
@dispatch.add_dispatch_support
def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None):
"""Returns a tensor with truncated random normal distribution of values.
The generated values follow a normal distribution
with specified mean and standard deviation,
except that values whose magnitude is more than
two standard deviations from the mean are dropped and re-picked.
Arguments:
shape: A tuple of integers, the shape of tensor to create.
mean: Mean of the values.
stddev: Standard deviation of the values.
dtype: String, dtype of returned tensor.
seed: Integer, random seed.
Returns:
A tensor.
"""
if dtype is None:
dtype = floatx()
if seed is None:
seed = np.random.randint(10e6)
return random_ops.truncated_normal(
shape, mean, stddev, dtype=dtype, seed=seed)
# CTC
# TensorFlow has a native implementation, but it uses sparse tensors
# and therefore requires a wrapper for Keras. The functions below convert
# dense to sparse tensors and also wraps up the beam search code that is
# in TensorFlow's CTC implementation
@keras_export('keras.backend.ctc_label_dense_to_sparse')
@dispatch.add_dispatch_support
def ctc_label_dense_to_sparse(labels, label_lengths):
"""Converts CTC labels from dense to sparse.
Arguments:
labels: dense CTC labels.
label_lengths: length of the labels.
Returns:
A sparse tensor representation of the labels.
"""
label_shape = array_ops.shape(labels)
num_batches_tns = array_ops.stack([label_shape[0]])
max_num_labels_tns = array_ops.stack([label_shape[1]])
def range_less_than(old_input, current_input):
return array_ops.expand_dims(
math_ops.range(array_ops.shape(old_input)[1]), 0) < array_ops.fill(
max_num_labels_tns, current_input)
init = math_ops.cast(
array_ops.fill([1, label_shape[1]], 0), dtypes_module.bool)
dense_mask = functional_ops.scan(
range_less_than, label_lengths, initializer=init, parallel_iterations=1)
dense_mask = dense_mask[:, 0, :]
label_array = array_ops.reshape(
array_ops.tile(math_ops.range(0, label_shape[1]), num_batches_tns),
label_shape)
label_ind = array_ops.boolean_mask(label_array, dense_mask)
batch_array = array_ops.transpose(
array_ops.reshape(
array_ops.tile(math_ops.range(0, label_shape[0]), max_num_labels_tns),
reverse(label_shape, 0)))
batch_ind = array_ops.boolean_mask(batch_array, dense_mask)
indices = array_ops.transpose(
array_ops.reshape(concatenate([batch_ind, label_ind], axis=0), [2, -1]))
vals_sparse = array_ops.gather_nd(labels, indices)
return sparse_tensor.SparseTensor(
math_ops.cast(indices, dtypes_module.int64), vals_sparse,
math_ops.cast(label_shape, dtypes_module.int64))
@keras_export('keras.backend.ctc_batch_cost')
@dispatch.add_dispatch_support
def ctc_batch_cost(y_true, y_pred, input_length, label_length):
"""Runs CTC loss algorithm on each batch element.
Arguments:
y_true: tensor `(samples, max_string_length)`
containing the truth labels.
y_pred: tensor `(samples, time_steps, num_categories)`
containing the prediction, or output of the softmax.
input_length: tensor `(samples, 1)` containing the sequence length for
each batch item in `y_pred`.
label_length: tensor `(samples, 1)` containing the sequence length for
each batch item in `y_true`.
Returns:
Tensor with shape (samples,1) containing the
CTC loss of each element.
"""
label_length = math_ops.cast(
array_ops.squeeze(label_length, axis=-1), dtypes_module.int32)
input_length = math_ops.cast(
array_ops.squeeze(input_length, axis=-1), dtypes_module.int32)
sparse_labels = math_ops.cast(
ctc_label_dense_to_sparse(y_true, label_length), dtypes_module.int32)
y_pred = math_ops.log(array_ops.transpose(y_pred, perm=[1, 0, 2]) + epsilon())
return array_ops.expand_dims(
ctc.ctc_loss(
inputs=y_pred, labels=sparse_labels, sequence_length=input_length), 1)
@keras_export('keras.backend.ctc_decode')
@dispatch.add_dispatch_support
def ctc_decode(y_pred, input_length, greedy=True, beam_width=100, top_paths=1):
"""Decodes the output of a softmax.
Can use either greedy search (also known as best path)
or a constrained dictionary search.
Arguments:
y_pred: tensor `(samples, time_steps, num_categories)`
containing the prediction, or output of the softmax.
input_length: tensor `(samples, )` containing the sequence length for
each batch item in `y_pred`.
greedy: perform much faster best-path search if `true`.
This does not use a dictionary.
beam_width: if `greedy` is `false`: a beam search decoder will be used
with a beam of this width.
top_paths: if `greedy` is `false`,
how many of the most probable paths will be returned.
Returns:
Tuple:
List: if `greedy` is `true`, returns a list of one element that
contains the decoded sequence.
If `false`, returns the `top_paths` most probable
decoded sequences.
Each decoded sequence has shape (samples, time_steps).
Important: blank labels are returned as `-1`.
Tensor `(top_paths, )` that contains
the log probability of each decoded sequence.
"""
input_shape = shape(y_pred)
samples, steps = input_shape[0], input_shape[1]
y_pred = math_ops.log(array_ops.transpose(y_pred, perm=[1, 0, 2]) + epsilon())
input_length = math_ops.cast(input_length, dtypes_module.int32)
if greedy:
(decoded, log_prob) = ctc.ctc_greedy_decoder(
inputs=y_pred, sequence_length=input_length)
else:
(decoded, log_prob) = ctc.ctc_beam_search_decoder(
inputs=y_pred,
sequence_length=input_length,
beam_width=beam_width,
top_paths=top_paths)
decoded_dense = [
sparse_ops.sparse_to_dense(
st.indices, (samples, steps), st.values, default_value=-1)
for st in decoded
]
return (decoded_dense, log_prob)
# HIGH ORDER FUNCTIONS
@keras_export('keras.backend.map_fn')
def map_fn(fn, elems, name=None, dtype=None):
"""Map the function fn over the elements elems and return the outputs.
Arguments:
fn: Callable that will be called upon each element in elems
elems: tensor
name: A string name for the map node in the graph
dtype: Output data type.
Returns:
Tensor with dtype `dtype`.
"""
return map_fn_lib.map_fn(fn, elems, name=name, dtype=dtype)
@keras_export('keras.backend.foldl')
def foldl(fn, elems, initializer=None, name=None):
"""Reduce elems using fn to combine them from left to right.
Arguments:
fn: Callable that will be called upon each element in elems and an
accumulator, for instance `lambda acc, x: acc + x`
elems: tensor
initializer: The first value used (`elems[0]` in case of None)
name: A string name for the foldl node in the graph
Returns:
Tensor with same type and shape as `initializer`.
"""
return functional_ops.foldl(fn, elems, initializer=initializer, name=name)
@keras_export('keras.backend.foldr')
def foldr(fn, elems, initializer=None, name=None):
"""Reduce elems using fn to combine them from right to left.
Arguments:
fn: Callable that will be called upon each element in elems and an
accumulator, for instance `lambda acc, x: acc + x`
elems: tensor
initializer: The first value used (`elems[-1]` in case of None)
name: A string name for the foldr node in the graph
Returns:
Same type and shape as initializer
"""
return functional_ops.foldr(fn, elems, initializer=initializer, name=name)
# Load Keras default configuration from config file if present.
# Set Keras base dir path given KERAS_HOME env variable, if applicable.
# Otherwise either ~/.keras or /tmp.
if 'KERAS_HOME' in os.environ:
_keras_dir = os.environ.get('KERAS_HOME')
else:
_keras_base_dir = os.path.expanduser('~')
_keras_dir = os.path.join(_keras_base_dir, '.keras')
_config_path = os.path.expanduser(os.path.join(_keras_dir, 'keras.json'))
if os.path.exists(_config_path):
try:
with open(_config_path) as fh:
_config = json.load(fh)
except ValueError:
_config = {}
_floatx = _config.get('floatx', floatx())
assert _floatx in {'float16', 'float32', 'float64'}
_epsilon = _config.get('epsilon', epsilon())
assert isinstance(_epsilon, float)
_image_data_format = _config.get('image_data_format', image_data_format())
assert _image_data_format in {'channels_last', 'channels_first'}
set_floatx(_floatx)
set_epsilon(_epsilon)
set_image_data_format(_image_data_format)
# Save config file.
if not os.path.exists(_keras_dir):
try:
os.makedirs(_keras_dir)
except OSError:
# Except permission denied and potential race conditions
# in multi-threaded environments.
pass
if not os.path.exists(_config_path):
_config = {
'floatx': floatx(),
'epsilon': epsilon(),
'backend': 'tensorflow',
'image_data_format': image_data_format()
}
try:
with open(_config_path, 'w') as f:
f.write(json.dumps(_config, indent=4))
except IOError:
# Except permission denied.
pass
def configure_and_create_distributed_session(distribution_strategy):
"""Configure session config and create a session with it."""
def _create_session(distribution_strategy):
"""Create the Distributed Strategy session."""
session_config = get_default_session_config()
# If a session already exists, merge in its config; in the case there is a
# conflict, take values of the existing config.
global _SESSION
if getattr(_SESSION, 'session', None) and _SESSION.session._config:
session_config.MergeFrom(_SESSION.session._config)
if is_tpu_strategy(distribution_strategy):
# TODO(priyag, yuefengz): Remove this workaround when Distribute
# Coordinator is integrated with keras and we can create a session from
# there.
distribution_strategy.configure(session_config)
master = distribution_strategy.extended._tpu_cluster_resolver.master() # pylint: disable=protected-access
session = session_module.Session(config=session_config, target=master)
else:
worker_context = dc_context.get_current_worker_context()
if worker_context:
dc_session_config = worker_context.session_config
# Merge the default session config to the one from distribute
# coordinator, which is fine for now since they don't have
# conflicting configurations.
dc_session_config.MergeFrom(session_config)
session = session_module.Session(
config=dc_session_config, target=worker_context.master_target)
else:
distribution_strategy.configure(session_config)
session = session_module.Session(config=session_config)
set_session(session)
if distribution_strategy.extended._in_multi_worker_mode():
dc.run_distribute_coordinator(
_create_session,
distribution_strategy,
mode=dc.CoordinatorMode.INDEPENDENT_WORKER)
else:
_create_session(distribution_strategy)
def is_tpu_strategy(strategy):
"""We're executing TPU Strategy."""
return (strategy is not None and
strategy.__class__.__name__.startswith('TPUStrategy'))
def cast_variables_to_tensor(tensors):
def _cast_variables_to_tensor(tensor):
if isinstance(tensor, variables_module.Variable):
return array_ops.identity(tensor)
return tensor
return nest.map_structure(_cast_variables_to_tensor, tensors)
def _is_symbolic_tensor(x):
return tensor_util.is_tensor(x) and not isinstance(x, ops.EagerTensor)
def convert_inputs_if_ragged(inputs):
"""Converts any ragged tensors to dense."""
def _convert_ragged_input(inputs):
if isinstance(inputs, ragged_tensor.RaggedTensor):
return inputs.to_tensor()
return inputs
flat_inputs = nest.flatten(inputs)
contains_ragged = py_any(
isinstance(i, ragged_tensor.RaggedTensor) for i in flat_inputs)
if not contains_ragged:
return inputs, None
inputs = nest.map_structure(_convert_ragged_input, inputs)
# Multiple mask are not yet supported, so one mask is used on all inputs.
# We approach this similarly when using row lengths to ignore steps.
nested_row_lengths = math_ops.cast(flat_inputs[0].nested_row_lengths()[0],
'int32')
return inputs, nested_row_lengths
def maybe_convert_to_ragged(is_ragged_input, output, nested_row_lengths):
"""Converts any ragged input back to its initial structure."""
if not is_ragged_input:
return output
return ragged_tensor.RaggedTensor.from_tensor(output, nested_row_lengths)
class ContextValueCache(weakref.WeakKeyDictionary):
"""Container that caches (possibly tensor) values based on the context.
This class is similar to defaultdict, where values may be produced by the
default factory specified during initialization. This class also has a default
value for the key (when key is `None`) -- the key is set to the the current
graph or eager context. The default factories for key and value are only used
in `__getitem__` and `setdefault`. The `.get()` behavior remains the same.
This object will return the value of the current graph or closest parent graph
if the current graph is a function. This is to reflect the fact that if a
tensor is created in eager/graph, child functions may capture that tensor.
The default factory method may accept keyword arguments (unlike defaultdict,
which only accepts callables with 0 arguments). To pass keyword arguments to
`default_factory`, use the `setdefault` method instead of `__getitem__`.
An example of how this class can be used in different contexts:
```
cache = ContextValueCache(int)
# Eager mode
cache[None] += 2
cache[None] += 4
assert cache[None] == 6
# Graph mode
with tf.Graph().as_default() as g:
cache[None] += 5
cache[g] += 3
assert cache[g] == 8
```
Example of a default factory with arguments:
```
cache = ContextValueCache(lambda x: x + 1)
g = tf.get_default_graph()
# Example with keyword argument.
value = cache.setdefault(key=g, kwargs={'x': 3})
assert cache[g] == 4
```
"""
def __init__(self, default_factory):
self.default_factory = default_factory
weakref.WeakKeyDictionary.__init__(self)
def _key(self):
if context.executing_eagerly():
return _DUMMY_EAGER_GRAPH.key
else:
return ops.get_default_graph()
def _get_parent_graph(self, graph):
"""Returns the parent graph or dummy eager object."""
# TODO(b/149317164): Currently FuncGraphs use ops.get_default_graph() as the
# outer graph. This results in outer_graph always being a Graph,
# even in eager mode (get_default_graph will create a new Graph if there
# isn't a default graph). Because of this bug, we have to specially set the
# key when eager execution is enabled.
parent_graph = graph.outer_graph
if (not isinstance(parent_graph, func_graph.FuncGraph) and
ops.executing_eagerly_outside_functions()):
return _DUMMY_EAGER_GRAPH.key
return parent_graph
def _get_recursive(self, key):
"""Gets the value at key or the closest parent graph."""
value = self.get(key)
if value is not None:
return value
# Since FuncGraphs are able to capture tensors and variables from their
# parent graphs, recursively search to see if there is a value stored for
# one of the parent graphs.
if isinstance(key, func_graph.FuncGraph):
return self._get_recursive(self._get_parent_graph(key))
return None
def __getitem__(self, key):
"""Gets the value at key (or current context), or sets default value.
Args:
key: May be `None` or `Graph`object. When `None`, the key is set to the
current context.
Returns:
Either the cached or default value.
"""
if key is None:
key = self._key()
value = self._get_recursive(key)
if value is None:
value = self[key] = self.default_factory() # pylint:disable=not-callable
return value
def setdefault(self, key=None, default=None, kwargs=None):
"""Sets the default value if key is not in dict, and returns the value."""
if key is None:
key = self._key()
kwargs = kwargs or {}
if default is None and key not in self:
default = self.default_factory(**kwargs)
return weakref.WeakKeyDictionary.setdefault(self, key, default)
# This dictionary holds a mapping {graph: learning_phase}. In eager mode, a
# dummy object is used.
# A learning phase is a bool tensor used to run Keras models in
# either train mode (learning_phase == 1) or test mode (learning_phase == 0).
_GRAPH_LEARNING_PHASES = ContextValueCache(_default_learning_phase)
# This dictionary holds a mapping between a graph and variables to initialize
# in the graph.
_GRAPH_VARIABLES = ContextValueCache(object_identity.ObjectIdentityWeakSet)
# This dictionary holds a mapping between a graph and TF optimizers created in
# the graph.
_GRAPH_TF_OPTIMIZERS = ContextValueCache(object_identity.ObjectIdentityWeakSet)