249 lines
9.5 KiB
Python
249 lines
9.5 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
# pylint: disable=invalid-name
|
|
"""VGG19 model for Keras.
|
|
|
|
Reference:
|
|
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
|
|
https://arxiv.org/abs/1409.1556) (ICLR 2015)
|
|
"""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from tensorflow.python.keras import backend
|
|
from tensorflow.python.keras.applications import imagenet_utils
|
|
from tensorflow.python.keras.engine import training
|
|
from tensorflow.python.keras.layers import VersionAwareLayers
|
|
from tensorflow.python.keras.utils import data_utils
|
|
from tensorflow.python.keras.utils import layer_utils
|
|
from tensorflow.python.lib.io import file_io
|
|
from tensorflow.python.util.tf_export import keras_export
|
|
|
|
|
|
WEIGHTS_PATH = ('https://storage.googleapis.com/tensorflow/keras-applications/'
|
|
'vgg19/vgg19_weights_tf_dim_ordering_tf_kernels.h5')
|
|
WEIGHTS_PATH_NO_TOP = ('https://storage.googleapis.com/tensorflow/'
|
|
'keras-applications/vgg19/'
|
|
'vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5')
|
|
|
|
layers = VersionAwareLayers()
|
|
|
|
|
|
@keras_export('keras.applications.vgg19.VGG19', 'keras.applications.VGG19')
|
|
def VGG19(
|
|
include_top=True,
|
|
weights='imagenet',
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000,
|
|
classifier_activation='softmax'):
|
|
"""Instantiates the VGG19 architecture.
|
|
|
|
Reference:
|
|
- [Very Deep Convolutional Networks for Large-Scale Image Recognition](
|
|
https://arxiv.org/abs/1409.1556) (ICLR 2015)
|
|
|
|
By default, it loads weights pre-trained on ImageNet. Check 'weights' for
|
|
other options.
|
|
|
|
This model can be built both with 'channels_first' data format
|
|
(channels, height, width) or 'channels_last' data format
|
|
(height, width, channels).
|
|
|
|
The default input size for this model is 224x224.
|
|
|
|
Caution: Be sure to properly pre-process your inputs to the application.
|
|
Please see `applications.vgg19.preprocess_input` for an example.
|
|
|
|
Arguments:
|
|
include_top: whether to include the 3 fully-connected
|
|
layers at the top of the network.
|
|
weights: one of `None` (random initialization),
|
|
'imagenet' (pre-training on ImageNet),
|
|
or the path to the weights file to be loaded.
|
|
input_tensor: optional Keras tensor
|
|
(i.e. output of `layers.Input()`)
|
|
to use as image input for the model.
|
|
input_shape: optional shape tuple, only to be specified
|
|
if `include_top` is False (otherwise the input shape
|
|
has to be `(224, 224, 3)`
|
|
(with `channels_last` data format)
|
|
or `(3, 224, 224)` (with `channels_first` data format).
|
|
It should have exactly 3 inputs channels,
|
|
and width and height should be no smaller than 32.
|
|
E.g. `(200, 200, 3)` would be one valid value.
|
|
pooling: Optional pooling mode for feature extraction
|
|
when `include_top` is `False`.
|
|
- `None` means that the output of the model will be
|
|
the 4D tensor output of the
|
|
last convolutional block.
|
|
- `avg` means that global average pooling
|
|
will be applied to the output of the
|
|
last convolutional block, and thus
|
|
the output of the model will be a 2D tensor.
|
|
- `max` means that global max pooling will
|
|
be applied.
|
|
classes: optional number of classes to classify images
|
|
into, only to be specified if `include_top` is True, and
|
|
if no `weights` argument is specified.
|
|
classifier_activation: A `str` or callable. The activation function to use
|
|
on the "top" layer. Ignored unless `include_top=True`. Set
|
|
`classifier_activation=None` to return the logits of the "top" layer.
|
|
|
|
Returns:
|
|
A `keras.Model` instance.
|
|
|
|
Raises:
|
|
ValueError: in case of invalid argument for `weights`,
|
|
or invalid input shape.
|
|
ValueError: if `classifier_activation` is not `softmax` or `None` when
|
|
using a pretrained top layer.
|
|
"""
|
|
if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
|
|
raise ValueError('The `weights` argument should be either '
|
|
'`None` (random initialization), `imagenet` '
|
|
'(pre-training on ImageNet), '
|
|
'or the path to the weights file to be loaded.')
|
|
|
|
if weights == 'imagenet' and include_top and classes != 1000:
|
|
raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
|
|
' as true, `classes` should be 1000')
|
|
# Determine proper input shape
|
|
input_shape = imagenet_utils.obtain_input_shape(
|
|
input_shape,
|
|
default_size=224,
|
|
min_size=32,
|
|
data_format=backend.image_data_format(),
|
|
require_flatten=include_top,
|
|
weights=weights)
|
|
|
|
if input_tensor is None:
|
|
img_input = layers.Input(shape=input_shape)
|
|
else:
|
|
if not backend.is_keras_tensor(input_tensor):
|
|
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
|
|
else:
|
|
img_input = input_tensor
|
|
# Block 1
|
|
x = layers.Conv2D(
|
|
64, (3, 3), activation='relu', padding='same', name='block1_conv1')(
|
|
img_input)
|
|
x = layers.Conv2D(
|
|
64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
|
|
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)
|
|
|
|
# Block 2
|
|
x = layers.Conv2D(
|
|
128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
|
|
x = layers.Conv2D(
|
|
128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
|
|
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)
|
|
|
|
# Block 3
|
|
x = layers.Conv2D(
|
|
256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
|
|
x = layers.Conv2D(
|
|
256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
|
|
x = layers.Conv2D(
|
|
256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
|
|
x = layers.Conv2D(
|
|
256, (3, 3), activation='relu', padding='same', name='block3_conv4')(x)
|
|
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)
|
|
|
|
# Block 4
|
|
x = layers.Conv2D(
|
|
512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
|
|
x = layers.Conv2D(
|
|
512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
|
|
x = layers.Conv2D(
|
|
512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
|
|
x = layers.Conv2D(
|
|
512, (3, 3), activation='relu', padding='same', name='block4_conv4')(x)
|
|
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)
|
|
|
|
# Block 5
|
|
x = layers.Conv2D(
|
|
512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
|
|
x = layers.Conv2D(
|
|
512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
|
|
x = layers.Conv2D(
|
|
512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
|
|
x = layers.Conv2D(
|
|
512, (3, 3), activation='relu', padding='same', name='block5_conv4')(x)
|
|
x = layers.MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
|
|
|
|
if include_top:
|
|
# Classification block
|
|
x = layers.Flatten(name='flatten')(x)
|
|
x = layers.Dense(4096, activation='relu', name='fc1')(x)
|
|
x = layers.Dense(4096, activation='relu', name='fc2')(x)
|
|
imagenet_utils.validate_activation(classifier_activation, weights)
|
|
x = layers.Dense(classes, activation=classifier_activation,
|
|
name='predictions')(x)
|
|
else:
|
|
if pooling == 'avg':
|
|
x = layers.GlobalAveragePooling2D()(x)
|
|
elif pooling == 'max':
|
|
x = layers.GlobalMaxPooling2D()(x)
|
|
|
|
# Ensure that the model takes into account
|
|
# any potential predecessors of `input_tensor`.
|
|
if input_tensor is not None:
|
|
inputs = layer_utils.get_source_inputs(input_tensor)
|
|
else:
|
|
inputs = img_input
|
|
# Create model.
|
|
model = training.Model(inputs, x, name='vgg19')
|
|
|
|
# Load weights.
|
|
if weights == 'imagenet':
|
|
if include_top:
|
|
weights_path = data_utils.get_file(
|
|
'vgg19_weights_tf_dim_ordering_tf_kernels.h5',
|
|
WEIGHTS_PATH,
|
|
cache_subdir='models',
|
|
file_hash='cbe5617147190e668d6c5d5026f83318')
|
|
else:
|
|
weights_path = data_utils.get_file(
|
|
'vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5',
|
|
WEIGHTS_PATH_NO_TOP,
|
|
cache_subdir='models',
|
|
file_hash='253f8cb515780f3b799900260a226db6')
|
|
model.load_weights(weights_path)
|
|
elif weights is not None:
|
|
model.load_weights(weights)
|
|
|
|
return model
|
|
|
|
|
|
@keras_export('keras.applications.vgg19.preprocess_input')
|
|
def preprocess_input(x, data_format=None):
|
|
return imagenet_utils.preprocess_input(
|
|
x, data_format=data_format, mode='caffe')
|
|
|
|
|
|
@keras_export('keras.applications.vgg19.decode_predictions')
|
|
def decode_predictions(preds, top=5):
|
|
return imagenet_utils.decode_predictions(preds, top=top)
|
|
|
|
|
|
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
|
mode='',
|
|
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE,
|
|
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
|
|
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|