423 lines
15 KiB
Python
423 lines
15 KiB
Python
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
# pylint: disable=invalid-name
|
|
"""DenseNet models for Keras.
|
|
|
|
Reference paper:
|
|
- [Densely Connected Convolutional Networks]
|
|
(https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award)
|
|
"""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from tensorflow.python.keras import backend
|
|
from tensorflow.python.keras.applications import imagenet_utils
|
|
from tensorflow.python.keras.engine import training
|
|
from tensorflow.python.keras.layers import VersionAwareLayers
|
|
from tensorflow.python.keras.utils import data_utils
|
|
from tensorflow.python.keras.utils import layer_utils
|
|
from tensorflow.python.lib.io import file_io
|
|
from tensorflow.python.util.tf_export import keras_export
|
|
|
|
|
|
BASE_WEIGTHS_PATH = ('https://storage.googleapis.com/tensorflow/'
|
|
'keras-applications/densenet/')
|
|
DENSENET121_WEIGHT_PATH = (
|
|
BASE_WEIGTHS_PATH + 'densenet121_weights_tf_dim_ordering_tf_kernels.h5')
|
|
DENSENET121_WEIGHT_PATH_NO_TOP = (
|
|
BASE_WEIGTHS_PATH +
|
|
'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5')
|
|
DENSENET169_WEIGHT_PATH = (
|
|
BASE_WEIGTHS_PATH + 'densenet169_weights_tf_dim_ordering_tf_kernels.h5')
|
|
DENSENET169_WEIGHT_PATH_NO_TOP = (
|
|
BASE_WEIGTHS_PATH +
|
|
'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5')
|
|
DENSENET201_WEIGHT_PATH = (
|
|
BASE_WEIGTHS_PATH + 'densenet201_weights_tf_dim_ordering_tf_kernels.h5')
|
|
DENSENET201_WEIGHT_PATH_NO_TOP = (
|
|
BASE_WEIGTHS_PATH +
|
|
'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5')
|
|
|
|
layers = VersionAwareLayers()
|
|
|
|
|
|
def dense_block(x, blocks, name):
|
|
"""A dense block.
|
|
|
|
Arguments:
|
|
x: input tensor.
|
|
blocks: integer, the number of building blocks.
|
|
name: string, block label.
|
|
|
|
Returns:
|
|
Output tensor for the block.
|
|
"""
|
|
for i in range(blocks):
|
|
x = conv_block(x, 32, name=name + '_block' + str(i + 1))
|
|
return x
|
|
|
|
|
|
def transition_block(x, reduction, name):
|
|
"""A transition block.
|
|
|
|
Arguments:
|
|
x: input tensor.
|
|
reduction: float, compression rate at transition layers.
|
|
name: string, block label.
|
|
|
|
Returns:
|
|
output tensor for the block.
|
|
"""
|
|
bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
|
|
x = layers.BatchNormalization(
|
|
axis=bn_axis, epsilon=1.001e-5, name=name + '_bn')(
|
|
x)
|
|
x = layers.Activation('relu', name=name + '_relu')(x)
|
|
x = layers.Conv2D(
|
|
int(backend.int_shape(x)[bn_axis] * reduction),
|
|
1,
|
|
use_bias=False,
|
|
name=name + '_conv')(
|
|
x)
|
|
x = layers.AveragePooling2D(2, strides=2, name=name + '_pool')(x)
|
|
return x
|
|
|
|
|
|
def conv_block(x, growth_rate, name):
|
|
"""A building block for a dense block.
|
|
|
|
Arguments:
|
|
x: input tensor.
|
|
growth_rate: float, growth rate at dense layers.
|
|
name: string, block label.
|
|
|
|
Returns:
|
|
Output tensor for the block.
|
|
"""
|
|
bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
|
|
x1 = layers.BatchNormalization(
|
|
axis=bn_axis, epsilon=1.001e-5, name=name + '_0_bn')(
|
|
x)
|
|
x1 = layers.Activation('relu', name=name + '_0_relu')(x1)
|
|
x1 = layers.Conv2D(
|
|
4 * growth_rate, 1, use_bias=False, name=name + '_1_conv')(
|
|
x1)
|
|
x1 = layers.BatchNormalization(
|
|
axis=bn_axis, epsilon=1.001e-5, name=name + '_1_bn')(
|
|
x1)
|
|
x1 = layers.Activation('relu', name=name + '_1_relu')(x1)
|
|
x1 = layers.Conv2D(
|
|
growth_rate, 3, padding='same', use_bias=False, name=name + '_2_conv')(
|
|
x1)
|
|
x = layers.Concatenate(axis=bn_axis, name=name + '_concat')([x, x1])
|
|
return x
|
|
|
|
|
|
def DenseNet(
|
|
blocks,
|
|
include_top=True,
|
|
weights='imagenet',
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000,
|
|
classifier_activation='softmax'):
|
|
"""Instantiates the DenseNet architecture.
|
|
|
|
Reference:
|
|
- [Densely Connected Convolutional Networks](
|
|
https://arxiv.org/abs/1608.06993) (CVPR 2017)
|
|
|
|
Optionally loads weights pre-trained on ImageNet.
|
|
Note that the data format convention used by the model is
|
|
the one specified in your Keras config at `~/.keras/keras.json`.
|
|
|
|
Caution: Be sure to properly pre-process your inputs to the application.
|
|
Please see `applications.densenet.preprocess_input` for an example.
|
|
|
|
Arguments:
|
|
blocks: numbers of building blocks for the four dense layers.
|
|
include_top: whether to include the fully-connected
|
|
layer at the top of the network.
|
|
weights: one of `None` (random initialization),
|
|
'imagenet' (pre-training on ImageNet),
|
|
or the path to the weights file to be loaded.
|
|
input_tensor: optional Keras tensor
|
|
(i.e. output of `layers.Input()`)
|
|
to use as image input for the model.
|
|
input_shape: optional shape tuple, only to be specified
|
|
if `include_top` is False (otherwise the input shape
|
|
has to be `(224, 224, 3)` (with `'channels_last'` data format)
|
|
or `(3, 224, 224)` (with `'channels_first'` data format).
|
|
It should have exactly 3 inputs channels,
|
|
and width and height should be no smaller than 32.
|
|
E.g. `(200, 200, 3)` would be one valid value.
|
|
pooling: optional pooling mode for feature extraction
|
|
when `include_top` is `False`.
|
|
- `None` means that the output of the model will be
|
|
the 4D tensor output of the
|
|
last convolutional block.
|
|
- `avg` means that global average pooling
|
|
will be applied to the output of the
|
|
last convolutional block, and thus
|
|
the output of the model will be a 2D tensor.
|
|
- `max` means that global max pooling will
|
|
be applied.
|
|
classes: optional number of classes to classify images
|
|
into, only to be specified if `include_top` is True, and
|
|
if no `weights` argument is specified.
|
|
classifier_activation: A `str` or callable. The activation function to use
|
|
on the "top" layer. Ignored unless `include_top=True`. Set
|
|
`classifier_activation=None` to return the logits of the "top" layer.
|
|
|
|
Returns:
|
|
A `keras.Model` instance.
|
|
|
|
Raises:
|
|
ValueError: in case of invalid argument for `weights`,
|
|
or invalid input shape.
|
|
ValueError: if `classifier_activation` is not `softmax` or `None` when
|
|
using a pretrained top layer.
|
|
"""
|
|
if not (weights in {'imagenet', None} or file_io.file_exists(weights)):
|
|
raise ValueError('The `weights` argument should be either '
|
|
'`None` (random initialization), `imagenet` '
|
|
'(pre-training on ImageNet), '
|
|
'or the path to the weights file to be loaded.')
|
|
|
|
if weights == 'imagenet' and include_top and classes != 1000:
|
|
raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
|
|
' as true, `classes` should be 1000')
|
|
|
|
# Determine proper input shape
|
|
input_shape = imagenet_utils.obtain_input_shape(
|
|
input_shape,
|
|
default_size=224,
|
|
min_size=32,
|
|
data_format=backend.image_data_format(),
|
|
require_flatten=include_top,
|
|
weights=weights)
|
|
|
|
if input_tensor is None:
|
|
img_input = layers.Input(shape=input_shape)
|
|
else:
|
|
if not backend.is_keras_tensor(input_tensor):
|
|
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
|
|
else:
|
|
img_input = input_tensor
|
|
|
|
bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
|
|
|
|
x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
|
|
x = layers.Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
|
|
x = layers.BatchNormalization(
|
|
axis=bn_axis, epsilon=1.001e-5, name='conv1/bn')(
|
|
x)
|
|
x = layers.Activation('relu', name='conv1/relu')(x)
|
|
x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
|
|
x = layers.MaxPooling2D(3, strides=2, name='pool1')(x)
|
|
|
|
x = dense_block(x, blocks[0], name='conv2')
|
|
x = transition_block(x, 0.5, name='pool2')
|
|
x = dense_block(x, blocks[1], name='conv3')
|
|
x = transition_block(x, 0.5, name='pool3')
|
|
x = dense_block(x, blocks[2], name='conv4')
|
|
x = transition_block(x, 0.5, name='pool4')
|
|
x = dense_block(x, blocks[3], name='conv5')
|
|
|
|
x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x)
|
|
x = layers.Activation('relu', name='relu')(x)
|
|
|
|
if include_top:
|
|
x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
|
|
|
|
imagenet_utils.validate_activation(classifier_activation, weights)
|
|
x = layers.Dense(classes, activation=classifier_activation,
|
|
name='predictions')(x)
|
|
else:
|
|
if pooling == 'avg':
|
|
x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
|
|
elif pooling == 'max':
|
|
x = layers.GlobalMaxPooling2D(name='max_pool')(x)
|
|
|
|
# Ensure that the model takes into account
|
|
# any potential predecessors of `input_tensor`.
|
|
if input_tensor is not None:
|
|
inputs = layer_utils.get_source_inputs(input_tensor)
|
|
else:
|
|
inputs = img_input
|
|
|
|
# Create model.
|
|
if blocks == [6, 12, 24, 16]:
|
|
model = training.Model(inputs, x, name='densenet121')
|
|
elif blocks == [6, 12, 32, 32]:
|
|
model = training.Model(inputs, x, name='densenet169')
|
|
elif blocks == [6, 12, 48, 32]:
|
|
model = training.Model(inputs, x, name='densenet201')
|
|
else:
|
|
model = training.Model(inputs, x, name='densenet')
|
|
|
|
# Load weights.
|
|
if weights == 'imagenet':
|
|
if include_top:
|
|
if blocks == [6, 12, 24, 16]:
|
|
weights_path = data_utils.get_file(
|
|
'densenet121_weights_tf_dim_ordering_tf_kernels.h5',
|
|
DENSENET121_WEIGHT_PATH,
|
|
cache_subdir='models',
|
|
file_hash='9d60b8095a5708f2dcce2bca79d332c7')
|
|
elif blocks == [6, 12, 32, 32]:
|
|
weights_path = data_utils.get_file(
|
|
'densenet169_weights_tf_dim_ordering_tf_kernels.h5',
|
|
DENSENET169_WEIGHT_PATH,
|
|
cache_subdir='models',
|
|
file_hash='d699b8f76981ab1b30698df4c175e90b')
|
|
elif blocks == [6, 12, 48, 32]:
|
|
weights_path = data_utils.get_file(
|
|
'densenet201_weights_tf_dim_ordering_tf_kernels.h5',
|
|
DENSENET201_WEIGHT_PATH,
|
|
cache_subdir='models',
|
|
file_hash='1ceb130c1ea1b78c3bf6114dbdfd8807')
|
|
else:
|
|
if blocks == [6, 12, 24, 16]:
|
|
weights_path = data_utils.get_file(
|
|
'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5',
|
|
DENSENET121_WEIGHT_PATH_NO_TOP,
|
|
cache_subdir='models',
|
|
file_hash='30ee3e1110167f948a6b9946edeeb738')
|
|
elif blocks == [6, 12, 32, 32]:
|
|
weights_path = data_utils.get_file(
|
|
'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5',
|
|
DENSENET169_WEIGHT_PATH_NO_TOP,
|
|
cache_subdir='models',
|
|
file_hash='b8c4d4c20dd625c148057b9ff1c1176b')
|
|
elif blocks == [6, 12, 48, 32]:
|
|
weights_path = data_utils.get_file(
|
|
'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5',
|
|
DENSENET201_WEIGHT_PATH_NO_TOP,
|
|
cache_subdir='models',
|
|
file_hash='c13680b51ded0fb44dff2d8f86ac8bb1')
|
|
model.load_weights(weights_path)
|
|
elif weights is not None:
|
|
model.load_weights(weights)
|
|
|
|
return model
|
|
|
|
|
|
@keras_export('keras.applications.densenet.DenseNet121',
|
|
'keras.applications.DenseNet121')
|
|
def DenseNet121(include_top=True,
|
|
weights='imagenet',
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000):
|
|
"""Instantiates the Densenet121 architecture."""
|
|
return DenseNet([6, 12, 24, 16], include_top, weights, input_tensor,
|
|
input_shape, pooling, classes)
|
|
|
|
|
|
@keras_export('keras.applications.densenet.DenseNet169',
|
|
'keras.applications.DenseNet169')
|
|
def DenseNet169(include_top=True,
|
|
weights='imagenet',
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000):
|
|
"""Instantiates the Densenet169 architecture."""
|
|
return DenseNet([6, 12, 32, 32], include_top, weights, input_tensor,
|
|
input_shape, pooling, classes)
|
|
|
|
|
|
@keras_export('keras.applications.densenet.DenseNet201',
|
|
'keras.applications.DenseNet201')
|
|
def DenseNet201(include_top=True,
|
|
weights='imagenet',
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000):
|
|
"""Instantiates the Densenet201 architecture."""
|
|
return DenseNet([6, 12, 48, 32], include_top, weights, input_tensor,
|
|
input_shape, pooling, classes)
|
|
|
|
|
|
@keras_export('keras.applications.densenet.preprocess_input')
|
|
def preprocess_input(x, data_format=None):
|
|
return imagenet_utils.preprocess_input(
|
|
x, data_format=data_format, mode='torch')
|
|
|
|
|
|
@keras_export('keras.applications.densenet.decode_predictions')
|
|
def decode_predictions(preds, top=5):
|
|
return imagenet_utils.decode_predictions(preds, top=top)
|
|
|
|
|
|
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
|
mode='',
|
|
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TORCH,
|
|
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC)
|
|
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|
|
|
|
DOC = """
|
|
|
|
Reference paper:
|
|
- [Densely Connected Convolutional Networks]
|
|
(https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award)
|
|
|
|
Optionally loads weights pre-trained on ImageNet.
|
|
Note that the data format convention used by the model is
|
|
the one specified in your Keras config at `~/.keras/keras.json`.
|
|
|
|
Arguments:
|
|
include_top: whether to include the fully-connected
|
|
layer at the top of the network.
|
|
weights: one of `None` (random initialization),
|
|
'imagenet' (pre-training on ImageNet),
|
|
or the path to the weights file to be loaded.
|
|
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
|
|
to use as image input for the model.
|
|
input_shape: optional shape tuple, only to be specified
|
|
if `include_top` is False (otherwise the input shape
|
|
has to be `(224, 224, 3)` (with `'channels_last'` data format)
|
|
or `(3, 224, 224)` (with `'channels_first'` data format).
|
|
It should have exactly 3 inputs channels,
|
|
and width and height should be no smaller than 32.
|
|
E.g. `(200, 200, 3)` would be one valid value.
|
|
pooling: Optional pooling mode for feature extraction
|
|
when `include_top` is `False`.
|
|
- `None` means that the output of the model will be
|
|
the 4D tensor output of the
|
|
last convolutional block.
|
|
- `avg` means that global average pooling
|
|
will be applied to the output of the
|
|
last convolutional block, and thus
|
|
the output of the model will be a 2D tensor.
|
|
- `max` means that global max pooling will
|
|
be applied.
|
|
classes: optional number of classes to classify images
|
|
into, only to be specified if `include_top` is True, and
|
|
if no `weights` argument is specified.
|
|
|
|
Returns:
|
|
A Keras model instance.
|
|
"""
|
|
|
|
setattr(DenseNet121, '__doc__', DenseNet121.__doc__ + DOC)
|
|
setattr(DenseNet169, '__doc__', DenseNet169.__doc__ + DOC)
|
|
setattr(DenseNet201, '__doc__', DenseNet201.__doc__ + DOC)
|