STT-tensorflow/tensorflow/python/grappler/item_test.py

130 lines
4.7 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for the swig wrapper of items."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import meta_graph
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import test_util
from tensorflow.python.grappler import item
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gen_array_ops
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
class ItemTest(test.TestCase):
def testInvalidItem(self):
with ops.Graph().as_default() as g:
a = constant_op.constant(10)
b = constant_op.constant(20)
c = a + b # pylint: disable=unused-variable
mg = meta_graph.create_meta_graph_def(graph=g)
# The train op isn't specified: this should raise an InvalidArgumentError
# exception.
with self.assertRaises(errors_impl.InvalidArgumentError):
item.Item(mg)
def testImportantOps(self):
with ops.Graph().as_default() as g:
a = constant_op.constant(10)
b = constant_op.constant(20)
c = a + b
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(c)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_list = grappler_item.IdentifyImportantOps()
self.assertItemsEqual(['Const', 'Const_1', 'add'], op_list)
def testOpProperties(self):
with ops.Graph().as_default() as g:
a = constant_op.constant(10)
b = constant_op.constant(20)
c = a + b
z = control_flow_ops.no_op()
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(c)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_properties = grappler_item.GetOpProperties()
# All the nodes in this model have one scalar output
for node in grappler_item.metagraph.graph_def.node:
node_prop = op_properties[node.name]
if node.name == z.name:
self.assertEqual(0, len(node_prop))
else:
self.assertEqual(1, len(node_prop))
self.assertEqual(dtypes.int32, node_prop[0].dtype)
self.assertEqual(tensor_shape.TensorShape([]), node_prop[0].shape)
def testUpdates(self):
with ops.Graph().as_default() as g:
a = constant_op.constant(10)
b = constant_op.constant(20)
c = a + b
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(c)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
initial_tf_item = grappler_item.tf_item
no_change_tf_item = grappler_item.tf_item
self.assertEqual(initial_tf_item, no_change_tf_item)
# Modify the placement.
for node in grappler_item.metagraph.graph_def.node:
node.device = '/cpu:0'
new_tf_item = grappler_item.tf_item
self.assertNotEqual(initial_tf_item, new_tf_item)
# Assign the same placement.
for node in grappler_item.metagraph.graph_def.node:
node.device = '/cpu:0'
newest_tf_item = grappler_item.tf_item
self.assertEqual(new_tf_item, newest_tf_item)
@test_util.run_v1_only('b/120545219')
def testColocationConstraints(self):
with ops.Graph().as_default() as g:
c = constant_op.constant([10])
v = variables.VariableV1([3], dtype=dtypes.int32)
i = gen_array_ops.ref_identity(v)
a = state_ops.assign(i, c)
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(a)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
groups = grappler_item.GetColocationGroups()
self.assertEqual(len(groups), 1)
self.assertItemsEqual(
groups[0], ['Assign', 'RefIdentity', 'Variable', 'Variable/Assign'])
if __name__ == '__main__':
test.main()