130 lines
4.7 KiB
Python
130 lines
4.7 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for the swig wrapper of items."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import errors_impl
|
|
from tensorflow.python.framework import meta_graph
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.framework import tensor_shape
|
|
from tensorflow.python.framework import test_util
|
|
from tensorflow.python.grappler import item
|
|
from tensorflow.python.ops import control_flow_ops
|
|
from tensorflow.python.ops import gen_array_ops
|
|
from tensorflow.python.ops import state_ops
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class ItemTest(test.TestCase):
|
|
|
|
def testInvalidItem(self):
|
|
with ops.Graph().as_default() as g:
|
|
a = constant_op.constant(10)
|
|
b = constant_op.constant(20)
|
|
c = a + b # pylint: disable=unused-variable
|
|
mg = meta_graph.create_meta_graph_def(graph=g)
|
|
|
|
# The train op isn't specified: this should raise an InvalidArgumentError
|
|
# exception.
|
|
with self.assertRaises(errors_impl.InvalidArgumentError):
|
|
item.Item(mg)
|
|
|
|
def testImportantOps(self):
|
|
with ops.Graph().as_default() as g:
|
|
a = constant_op.constant(10)
|
|
b = constant_op.constant(20)
|
|
c = a + b
|
|
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
|
|
train_op.append(c)
|
|
mg = meta_graph.create_meta_graph_def(graph=g)
|
|
grappler_item = item.Item(mg)
|
|
op_list = grappler_item.IdentifyImportantOps()
|
|
self.assertItemsEqual(['Const', 'Const_1', 'add'], op_list)
|
|
|
|
def testOpProperties(self):
|
|
with ops.Graph().as_default() as g:
|
|
a = constant_op.constant(10)
|
|
b = constant_op.constant(20)
|
|
c = a + b
|
|
z = control_flow_ops.no_op()
|
|
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
|
|
train_op.append(c)
|
|
mg = meta_graph.create_meta_graph_def(graph=g)
|
|
grappler_item = item.Item(mg)
|
|
op_properties = grappler_item.GetOpProperties()
|
|
|
|
# All the nodes in this model have one scalar output
|
|
for node in grappler_item.metagraph.graph_def.node:
|
|
node_prop = op_properties[node.name]
|
|
|
|
if node.name == z.name:
|
|
self.assertEqual(0, len(node_prop))
|
|
else:
|
|
self.assertEqual(1, len(node_prop))
|
|
self.assertEqual(dtypes.int32, node_prop[0].dtype)
|
|
self.assertEqual(tensor_shape.TensorShape([]), node_prop[0].shape)
|
|
|
|
def testUpdates(self):
|
|
with ops.Graph().as_default() as g:
|
|
a = constant_op.constant(10)
|
|
b = constant_op.constant(20)
|
|
c = a + b
|
|
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
|
|
train_op.append(c)
|
|
mg = meta_graph.create_meta_graph_def(graph=g)
|
|
grappler_item = item.Item(mg)
|
|
|
|
initial_tf_item = grappler_item.tf_item
|
|
no_change_tf_item = grappler_item.tf_item
|
|
self.assertEqual(initial_tf_item, no_change_tf_item)
|
|
|
|
# Modify the placement.
|
|
for node in grappler_item.metagraph.graph_def.node:
|
|
node.device = '/cpu:0'
|
|
new_tf_item = grappler_item.tf_item
|
|
self.assertNotEqual(initial_tf_item, new_tf_item)
|
|
|
|
# Assign the same placement.
|
|
for node in grappler_item.metagraph.graph_def.node:
|
|
node.device = '/cpu:0'
|
|
newest_tf_item = grappler_item.tf_item
|
|
self.assertEqual(new_tf_item, newest_tf_item)
|
|
|
|
@test_util.run_v1_only('b/120545219')
|
|
def testColocationConstraints(self):
|
|
with ops.Graph().as_default() as g:
|
|
c = constant_op.constant([10])
|
|
v = variables.VariableV1([3], dtype=dtypes.int32)
|
|
i = gen_array_ops.ref_identity(v)
|
|
a = state_ops.assign(i, c)
|
|
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
|
|
train_op.append(a)
|
|
mg = meta_graph.create_meta_graph_def(graph=g)
|
|
grappler_item = item.Item(mg)
|
|
groups = grappler_item.GetColocationGroups()
|
|
self.assertEqual(len(groups), 1)
|
|
self.assertItemsEqual(
|
|
groups[0], ['Assign', 'RefIdentity', 'Variable', 'Variable/Assign'])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test.main()
|