STT-tensorflow/tensorflow/python/grappler/datasets_test.py

449 lines
15 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for the datasets shape inference."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.ops import iterator_ops
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import meta_graph
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.grappler import item
from tensorflow.python.ops import array_ops
from tensorflow.python.platform import test
class GrapplerTest(test.TestCase):
def testFromTensors(self):
test_cases = [{
'tensor': 0,
'shape': tensor_shape.TensorShape([])
}, {
'tensor': np.array([1, 2, 3]),
'shape': tensor_shape.TensorShape([3])
}, {
'tensor': np.array([[1, 2, 3]]),
'shape': tensor_shape.TensorShape([1, 3])
}]
for test_case in test_cases:
with ops.Graph().as_default() as g:
dataset = dataset_ops.Dataset.from_tensors(test_case['tensor'])
iterator = dataset_ops.make_one_shot_iterator(dataset)
get_next = iterator.get_next()
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(get_next)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_properties = grappler_item.GetOpProperties()
self.assertEqual(test_case['shape'],
op_properties['IteratorGetNext'][0].shape)
def testFromTensorSlices(self):
test_cases = [{
'tensor': np.array([1, 2, 3]),
'shape': tensor_shape.TensorShape([])
}, {
'tensor': np.array([[1, 2, 3]]),
'shape': tensor_shape.TensorShape([3])
}, {
'tensor': np.array([[[1, 2, 3]]]),
'shape': tensor_shape.TensorShape([1, 3])
}]
for test_case in test_cases:
with ops.Graph().as_default() as g:
dataset = dataset_ops.Dataset.from_tensor_slices(test_case['tensor'])
iterator = dataset_ops.make_one_shot_iterator(dataset)
get_next = iterator.get_next()
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(get_next)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_properties = grappler_item.GetOpProperties()
self.assertEqual(test_case['shape'],
op_properties['IteratorGetNext'][0].shape)
def testFromGenerator(self):
test_cases = [{
'tensor': 0,
'shape': tensor_shape.TensorShape([])
}, {
'tensor': np.array([1, 2, 3]),
'shape': tensor_shape.TensorShape([3])
}, {
'tensor': np.array([[1, 2, 3]]),
'shape': tensor_shape.TensorShape([1, 3])
}]
for test_case in test_cases:
def make_generator(tensor):
def generator():
yield tensor
return generator
with ops.Graph().as_default() as g:
dataset = dataset_ops.Dataset.from_generator(
make_generator(test_case['tensor']),
dtypes.int64,
output_shapes=test_case['shape'])
iterator = dataset_ops.make_one_shot_iterator(dataset)
get_next = iterator.get_next()
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(get_next)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_properties = grappler_item.GetOpProperties()
self.assertEqual(test_case['shape'],
op_properties['IteratorGetNext'][0].shape)
def testRange(self):
with ops.Graph().as_default() as g:
dataset = dataset_ops.Dataset.range(42)
iterator = dataset_ops.make_one_shot_iterator(dataset)
get_next = iterator.get_next()
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(get_next)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_properties = grappler_item.GetOpProperties()
self.assertEqual(
tensor_shape.TensorShape([]),
op_properties['IteratorGetNext'][0].shape)
def _testTransformation(self, fn):
test_cases = [{
'tensor': 0,
'shape': tensor_shape.TensorShape({})
}, {
'tensor': np.array([1, 2, 3]),
'shape': tensor_shape.TensorShape([3])
}, {
'tensor': np.array([[1, 2, 3]]),
'shape': tensor_shape.TensorShape([1, 3])
}]
for test_case in test_cases:
with ops.Graph().as_default() as g:
dataset = dataset_ops.Dataset.from_tensors(test_case['tensor'])
dataset = fn(dataset, test_case['tensor'], test_case['shape'])
iterator = dataset_ops.make_one_shot_iterator(dataset)
get_next = iterator.get_next()
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(get_next)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_properties = grappler_item.GetOpProperties()
self.assertEqual(test_case['shape'],
op_properties['IteratorGetNext'][0].shape)
def testConcatenate(self):
def fn(dataset, tensor, shape):
del shape
return dataset.concatenate(dataset_ops.Dataset.from_tensors(tensor))
self._testTransformation(fn)
def testPrefetch(self):
def fn(dataset, tensor, shape):
del tensor, shape
return dataset.prefetch(42)
self._testTransformation(fn)
def testRepeat(self):
def fn(dataset, tensor, shape):
del tensor, shape
return dataset.repeat(42)
self._testTransformation(fn)
def testShuffle(self):
def fn(dataset, tensor, shape):
del tensor, shape
return dataset.shuffle(42)
self._testTransformation(fn)
def testCache(self):
def fn(dataset, tensor, shape):
del tensor, shape
return dataset.cache()
self._testTransformation(fn)
def testTake(self):
def fn(dataset, tensor, shape):
del tensor, shape
return dataset.take(42)
self._testTransformation(fn)
def testSkip(self):
def fn(dataset, tensor, shape):
del tensor, shape
return dataset.skip(42)
self._testTransformation(fn)
def testShard(self):
def fn(dataset, tensor, shape):
del tensor, shape
return dataset.shard(42, 0)
self._testTransformation(fn)
def testFilter(self):
def fn(dataset, tensor, shape):
del tensor, shape
return dataset.filter(lambda x: True)
self._testTransformation(fn)
def as_tensor_shape(self, proto_with_symbolic_values):
for i in range(len(proto_with_symbolic_values.dim)):
if proto_with_symbolic_values.dim[i].size < -1:
proto_with_symbolic_values.dim[i].size = -1
return tensor_shape.TensorShape(proto_with_symbolic_values)
def testBatch(self):
test_cases = [{
'tensor': 0,
'shape': tensor_shape.TensorShape([None])
}, {
'tensor': np.array([1, 2, 3]),
'shape': tensor_shape.TensorShape([None, 3])
}, {
'tensor': np.array([[1, 2, 3]]),
'shape': tensor_shape.TensorShape([None, 1, 3])
}]
for test_case in test_cases:
with ops.Graph().as_default() as g:
dataset = dataset_ops.Dataset.from_tensors(test_case['tensor'])
dataset = dataset.batch(42)
iterator = dataset_ops.make_one_shot_iterator(dataset)
get_next = iterator.get_next()
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(get_next)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_properties = grappler_item.GetOpProperties()
inferred_shape = self.as_tensor_shape(
op_properties['IteratorGetNext'][0].shape)
self.assertTrue(test_case['shape'].dims[0].is_compatible_with(
inferred_shape[0]))
self.assertEqual(test_case['shape'][1:], inferred_shape[1:])
def testPaddedBatch(self):
test_cases = [{
'tensor': 0,
'shape': tensor_shape.TensorShape([None])
}, {
'tensor': np.array([1, 2, 3]),
'shape': tensor_shape.TensorShape([None, 4])
}, {
'tensor': np.array([[1, 2, 3]]),
'shape': tensor_shape.TensorShape([None, 2, 4])
}]
for test_case in test_cases:
with ops.Graph().as_default() as g:
dataset = dataset_ops.Dataset.from_tensors(test_case['tensor'])
dataset = dataset.padded_batch(42, padded_shapes=test_case['shape'][1:])
iterator = dataset_ops.make_one_shot_iterator(dataset)
get_next = iterator.get_next()
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(get_next)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_properties = grappler_item.GetOpProperties()
inferred_shape = self.as_tensor_shape(
op_properties['IteratorGetNext'][0].shape)
self.assertTrue(test_case['shape'].dims[0].is_compatible_with(
inferred_shape[0]))
self.assertEqual(test_case['shape'][1:], inferred_shape[1:])
def testFlatMap(self):
test_cases = [{
'tensor': 0,
'shape': tensor_shape.TensorShape([])
}, {
'tensor': np.array([1, 2, 3]),
'shape': tensor_shape.TensorShape([3])
}, {
'tensor': np.array([[1, 2, 3]]),
'shape': tensor_shape.TensorShape([1, 3])
}]
for test_case in test_cases:
with ops.Graph().as_default() as g:
dataset = dataset_ops.Dataset.range(42)
def make_dataset(tensor):
def dataset_fn(n):
return dataset_ops.Dataset.from_tensors(tensor).repeat(n)
return dataset_fn
dataset = dataset.flat_map(make_dataset(test_case['tensor']))
iterator = dataset_ops.make_one_shot_iterator(dataset)
get_next = iterator.get_next()
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(get_next)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_properties = grappler_item.GetOpProperties()
self.assertEqual(test_case['shape'],
op_properties['IteratorGetNext'][0].shape)
def testInterleave(self):
test_cases = [{
'tensor': 0,
'shape': tensor_shape.TensorShape([])
}, {
'tensor': np.array([1, 2, 3]),
'shape': tensor_shape.TensorShape([3])
}, {
'tensor': np.array([[1, 2, 3]]),
'shape': tensor_shape.TensorShape([1, 3])
}]
for test_case in test_cases:
with ops.Graph().as_default() as g:
dataset = dataset_ops.Dataset.range(42)
def make_dataset(tensor):
def dataset_fn(n):
return dataset_ops.Dataset.from_tensors(tensor).repeat(n)
return dataset_fn
dataset = dataset.interleave(
make_dataset(test_case['tensor']), cycle_length=42)
iterator = dataset_ops.make_one_shot_iterator(dataset)
get_next = iterator.get_next()
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(get_next)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_properties = grappler_item.GetOpProperties()
self.assertEqual(test_case['shape'],
op_properties['IteratorGetNext'][0].shape)
def testMap(self):
test_cases = [{
'tensor': 0,
'shape': tensor_shape.TensorShape([])
}, {
'tensor': np.array([1, 2, 3]),
'shape': tensor_shape.TensorShape([3])
}, {
'tensor': np.array([[1, 2, 3]]),
'shape': tensor_shape.TensorShape([3, 1])
}, {
'tensor': np.array([[[1, 2, 3], [4, 5, 6]]]),
'shape': tensor_shape.TensorShape([3, 2, 1])
}]
for test_case in test_cases:
with ops.Graph().as_default() as g:
dataset = dataset_ops.Dataset.from_tensors(test_case['tensor'])
dataset = dataset.map(array_ops.transpose)
iterator = dataset_ops.make_one_shot_iterator(dataset)
get_next = iterator.get_next()
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(get_next)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_properties = grappler_item.GetOpProperties()
self.assertEqual(test_case['shape'],
op_properties['IteratorGetNext'][0].shape)
def testFromStructure(self):
test_cases = [{
'shape': tensor_shape.TensorShape([])
}, {
'shape': tensor_shape.TensorShape([3])
}, {
'shape': tensor_shape.TensorShape([1, 2])
}, {
'shape': tensor_shape.TensorShape([1, 2, 3])
}]
for test_case in test_cases:
with ops.Graph().as_default() as g:
iterator = iterator_ops.Iterator.from_structure(
dtypes.int64, output_shapes=test_case['shape'])
get_next = iterator.get_next()
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(get_next)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_properties = grappler_item.GetOpProperties()
self.assertEqual(test_case['shape'],
op_properties['IteratorGetNext'][0].shape)
def testFromStringHandle(self):
test_cases = [{
'shape': tensor_shape.TensorShape([])
}, {
'shape': tensor_shape.TensorShape([3])
}, {
'shape': tensor_shape.TensorShape([1, 2])
}, {
'shape': tensor_shape.TensorShape([1, 2, 3])
}]
for test_case in test_cases:
with ops.Graph().as_default() as g:
iterator = iterator_ops.Iterator.from_structure(dtypes.int64)
handle = iterator.string_handle()
iterator = iterator_ops.Iterator.from_string_handle(
handle, dtypes.int64, output_shapes=test_case['shape'])
get_next = iterator.get_next()
train_op = ops.get_collection_ref(ops.GraphKeys.TRAIN_OP)
train_op.append(get_next)
mg = meta_graph.create_meta_graph_def(graph=g)
grappler_item = item.Item(mg)
op_properties = grappler_item.GetOpProperties()
self.assertEqual(test_case['shape'],
op_properties['IteratorGetNext'][0].shape)
if __name__ == '__main__':
test.main()