102 lines
3.4 KiB
Python
102 lines
3.4 KiB
Python
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for DLPack functions."""
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from absl.testing import parameterized
|
|
import numpy as np
|
|
|
|
from tensorflow.python.dlpack import dlpack
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import ops
|
|
from tensorflow.python.platform import test
|
|
|
|
int_dtypes = [
|
|
np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32,
|
|
np.uint64
|
|
]
|
|
float_dtypes = [np.float16, np.float32, np.float64]
|
|
complex_dtypes = [np.complex64, np.complex128]
|
|
dlpack_dtypes = int_dtypes + float_dtypes + [dtypes.bfloat16]
|
|
|
|
testcase_shapes = [(), (1,), (2, 3), (2, 0), (0, 7), (4, 1, 2)]
|
|
|
|
|
|
def FormatShapeAndDtype(shape, dtype):
|
|
return "_{}[{}]".format(str(dtype), ",".join(map(str, shape)))
|
|
|
|
|
|
def GetNamedTestParameters():
|
|
result = []
|
|
for dtype in dlpack_dtypes:
|
|
for shape in testcase_shapes:
|
|
result.append({
|
|
"testcase_name": FormatShapeAndDtype(shape, dtype),
|
|
"dtype": dtype,
|
|
"shape": shape
|
|
})
|
|
return result
|
|
|
|
|
|
class DLPackTest(parameterized.TestCase, test.TestCase):
|
|
|
|
@parameterized.named_parameters(GetNamedTestParameters())
|
|
def testRoundTrip(self, dtype, shape):
|
|
np.random.seed(42)
|
|
np_array = np.random.randint(0, 10, shape)
|
|
tf_tensor = constant_op.constant(np_array, dtype=dtype)
|
|
dlcapsule = dlpack.to_dlpack(tf_tensor)
|
|
del tf_tensor # should still work
|
|
tf_tensor2 = dlpack.from_dlpack(dlcapsule)
|
|
self.assertAllClose(np_array, tf_tensor2)
|
|
|
|
def testTensorsCanBeConsumedOnceOnly(self):
|
|
np.random.seed(42)
|
|
np_array = np.random.randint(0, 10, (2, 3, 4))
|
|
tf_tensor = constant_op.constant(np_array, dtype=np.float32)
|
|
dlcapsule = dlpack.to_dlpack(tf_tensor)
|
|
del tf_tensor # should still work
|
|
_ = dlpack.from_dlpack(dlcapsule)
|
|
|
|
def ConsumeDLPackTensor():
|
|
dlpack.from_dlpack(dlcapsule) # Should can be consumed only once
|
|
|
|
self.assertRaisesRegex(Exception,
|
|
".*a DLPack tensor may be consumed at most once.*",
|
|
ConsumeDLPackTensor)
|
|
|
|
def testUnsupportedTypeToDLPack(self):
|
|
|
|
def UnsupportedQint16():
|
|
tf_tensor = constant_op.constant([[1, 4], [5, 2]], dtype=dtypes.qint16)
|
|
_ = dlpack.to_dlpack(tf_tensor)
|
|
|
|
def UnsupportedComplex64():
|
|
tf_tensor = constant_op.constant([[1, 4], [5, 2]], dtype=dtypes.complex64)
|
|
_ = dlpack.to_dlpack(tf_tensor)
|
|
|
|
self.assertRaisesRegex(Exception, ".* is not supported by dlpack",
|
|
UnsupportedQint16)
|
|
self.assertRaisesRegex(Exception, ".* is not supported by dlpack",
|
|
UnsupportedComplex64)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
ops.enable_eager_execution()
|
|
test.main()
|