STT-tensorflow/tensorflow/python/dlpack/dlpack_test.py

102 lines
3.4 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for DLPack functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
import numpy as np
from tensorflow.python.dlpack import dlpack
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.platform import test
int_dtypes = [
np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32,
np.uint64
]
float_dtypes = [np.float16, np.float32, np.float64]
complex_dtypes = [np.complex64, np.complex128]
dlpack_dtypes = int_dtypes + float_dtypes + [dtypes.bfloat16]
testcase_shapes = [(), (1,), (2, 3), (2, 0), (0, 7), (4, 1, 2)]
def FormatShapeAndDtype(shape, dtype):
return "_{}[{}]".format(str(dtype), ",".join(map(str, shape)))
def GetNamedTestParameters():
result = []
for dtype in dlpack_dtypes:
for shape in testcase_shapes:
result.append({
"testcase_name": FormatShapeAndDtype(shape, dtype),
"dtype": dtype,
"shape": shape
})
return result
class DLPackTest(parameterized.TestCase, test.TestCase):
@parameterized.named_parameters(GetNamedTestParameters())
def testRoundTrip(self, dtype, shape):
np.random.seed(42)
np_array = np.random.randint(0, 10, shape)
tf_tensor = constant_op.constant(np_array, dtype=dtype)
dlcapsule = dlpack.to_dlpack(tf_tensor)
del tf_tensor # should still work
tf_tensor2 = dlpack.from_dlpack(dlcapsule)
self.assertAllClose(np_array, tf_tensor2)
def testTensorsCanBeConsumedOnceOnly(self):
np.random.seed(42)
np_array = np.random.randint(0, 10, (2, 3, 4))
tf_tensor = constant_op.constant(np_array, dtype=np.float32)
dlcapsule = dlpack.to_dlpack(tf_tensor)
del tf_tensor # should still work
_ = dlpack.from_dlpack(dlcapsule)
def ConsumeDLPackTensor():
dlpack.from_dlpack(dlcapsule) # Should can be consumed only once
self.assertRaisesRegex(Exception,
".*a DLPack tensor may be consumed at most once.*",
ConsumeDLPackTensor)
def testUnsupportedTypeToDLPack(self):
def UnsupportedQint16():
tf_tensor = constant_op.constant([[1, 4], [5, 2]], dtype=dtypes.qint16)
_ = dlpack.to_dlpack(tf_tensor)
def UnsupportedComplex64():
tf_tensor = constant_op.constant([[1, 4], [5, 2]], dtype=dtypes.complex64)
_ = dlpack.to_dlpack(tf_tensor)
self.assertRaisesRegex(Exception, ".* is not supported by dlpack",
UnsupportedQint16)
self.assertRaisesRegex(Exception, ".* is not supported by dlpack",
UnsupportedComplex64)
if __name__ == "__main__":
ops.enable_eager_execution()
test.main()