STT-tensorflow/tensorflow/python/distribute/input_ops.py

102 lines
3.9 KiB
Python

# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Input-pipeline utilities for Distribution strategies."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.data.experimental.ops import distribute
from tensorflow.python.data.experimental.ops.distribute_options import AutoShardPolicy
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import traverse
from tensorflow.python.framework import op_def_registry
from tensorflow.python.framework import ops
# pylint: disable=protected-access
def auto_shard_dataset(dataset, num_shards, index):
"""Shard the input pipeline by sharding the underlying list of files.
Args:
dataset: A `tf.data.Dataset` instance, typically the result of a bunch of
dataset transformations.
num_shards: A `tf.int64` scalar `tf.Tensor`, representing the number of
shards operating in parallel. Same usage as in `tf.data.Dataset.shard`.
index: A `tf.int64` scalar `tf.Tensor`, representing the worker index.
Same usage as in `tf.data.Dataset.shard`.
Returns:
A modified `Dataset` obtained by updating the pipeline sharded by the
files. The input dataset will be returned if we cannot automatically
determine a good way to shard the input dataset.
"""
if (dataset.options().experimental_distribute.auto_shard_policy !=
AutoShardPolicy.OFF):
if isinstance(dataset, dataset_ops.DatasetV1):
return distribute._AutoShardDatasetV1(dataset, num_shards, index)
else:
return distribute._AutoShardDataset(dataset, num_shards, index)
else:
return dataset
def _clone_dataset(dataset):
"""Returns a cloned version of `dataset`."""
variant_tensor_ops = traverse.obtain_all_variant_tensor_ops(dataset)
remap_dict = _clone_helper(dataset._variant_tensor.op, variant_tensor_ops)
new_variant_tensor = remap_dict[dataset._variant_tensor.op].outputs[0]
return dataset_ops._VariantDataset(new_variant_tensor, dataset.element_spec)
def _get_op_def(op):
return op.op_def or op_def_registry.get(op.type)
def _clone_helper(op_to_clone, variant_tensor_ops):
"""Helper method that recursively clones `op_to_clone`.
Args:
op_to_clone: The op we want to clone.
variant_tensor_ops: A list of ops that we have to clone along the way.
Returns:
A dictionary mapping old_ops to new_ops created. Includes op_to_clone
as a key.
"""
remap_dict = {}
for input_tensor in op_to_clone.inputs:
input_tensor_op = input_tensor.op
if input_tensor_op in variant_tensor_ops:
recursive_map = _clone_helper(input_tensor_op, variant_tensor_ops)
remap_dict.update(recursive_map)
inputs_list = []
for input_tensor in op_to_clone.inputs:
input_tensor_op = input_tensor.op
if input_tensor_op in remap_dict:
remapped_input = remap_dict[input_tensor_op].outputs[0]
inputs_list.append(remapped_input)
else:
inputs_list.append(input_tensor_op.outputs[input_tensor.value_index])
g = ops.get_default_graph()
new_op = g.create_op(
op_to_clone.type,
inputs_list, [o.dtype for o in op_to_clone.outputs],
name=op_to_clone.name,
attrs=op_to_clone.node_def.attr,
op_def=_get_op_def(op_to_clone))
remap_dict[op_to_clone] = new_op
return remap_dict