STT-tensorflow/tensorflow/python/data/ops/readers.py
Andrew Audibert 3b58a7de85 Clean up expired forward compatibility checks.
PiperOrigin-RevId: 308455990
Change-Id: Icb38f1296a4c0326c3146e36e0e23a8dfaa37695
2020-04-25 19:17:43 -07:00

532 lines
21 KiB
Python

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python wrappers for reader Datasets."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python import tf2
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import convert
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_spec
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import gen_dataset_ops
from tensorflow.python.ops import gen_experimental_dataset_ops as ged_ops
from tensorflow.python.util.tf_export import tf_export
_DEFAULT_READER_BUFFER_SIZE_BYTES = 256 * 1024 # 256 KB
def _create_or_validate_filenames_dataset(filenames):
"""Creates (or validates) a dataset of filenames.
Args:
filenames: Either a list or dataset of filenames. If it is a list, it is
convert to a dataset. If it is a dataset, its type and shape is validated.
Returns:
A dataset of filenames.
"""
if isinstance(filenames, dataset_ops.DatasetV2):
if dataset_ops.get_legacy_output_types(filenames) != dtypes.string:
raise TypeError(
"`filenames` must be a `tf.data.Dataset` of `tf.string` elements.")
if not dataset_ops.get_legacy_output_shapes(filenames).is_compatible_with(
tensor_shape.TensorShape([])):
raise TypeError(
"`filenames` must be a `tf.data.Dataset` of scalar `tf.string` "
"elements.")
else:
filenames = ops.convert_to_tensor(filenames, dtype_hint=dtypes.string)
if filenames.dtype != dtypes.string:
raise TypeError(
"`filenames` must be a `tf.Tensor` of dtype `tf.string` dtype."
" Got {}".format(filenames.dtype))
filenames = array_ops.reshape(filenames, [-1], name="flat_filenames")
filenames = dataset_ops.DatasetV2.from_tensor_slices(filenames)
return filenames
def _create_dataset_reader(dataset_creator, filenames, num_parallel_reads=None):
"""Creates a dataset that reads the given files using the given reader.
Args:
dataset_creator: A function that takes in a single file name and returns a
dataset.
filenames: A `tf.data.Dataset` containing one or more filenames.
num_parallel_reads: The number of parallel reads we should do.
Returns:
A `Dataset` that reads data from `filenames`.
"""
def read_one_file(filename):
filename = ops.convert_to_tensor(filename, dtypes.string, name="filename")
return dataset_creator(filename)
if num_parallel_reads is None:
return filenames.flat_map(read_one_file)
elif num_parallel_reads == dataset_ops.AUTOTUNE:
return filenames.interleave(
read_one_file, num_parallel_calls=num_parallel_reads)
else:
return ParallelInterleaveDataset(
filenames,
read_one_file,
cycle_length=num_parallel_reads,
block_length=1,
sloppy=False,
buffer_output_elements=None,
prefetch_input_elements=None)
class _TextLineDataset(dataset_ops.DatasetSource):
"""A `Dataset` comprising records from one or more text files."""
def __init__(self, filenames, compression_type=None, buffer_size=None):
"""Creates a `TextLineDataset`.
Args:
filenames: A `tf.string` tensor containing one or more filenames.
compression_type: (Optional.) A `tf.string` scalar evaluating to one of
`""` (no compression), `"ZLIB"`, or `"GZIP"`.
buffer_size: (Optional.) A `tf.int64` scalar denoting the number of bytes
to buffer. A value of 0 results in the default buffering values chosen
based on the compression type.
"""
self._filenames = filenames
self._compression_type = convert.optional_param_to_tensor(
"compression_type",
compression_type,
argument_default="",
argument_dtype=dtypes.string)
self._buffer_size = convert.optional_param_to_tensor(
"buffer_size",
buffer_size,
argument_default=_DEFAULT_READER_BUFFER_SIZE_BYTES)
variant_tensor = gen_dataset_ops.text_line_dataset(self._filenames,
self._compression_type,
self._buffer_size)
super(_TextLineDataset, self).__init__(variant_tensor)
@property
def element_spec(self):
return tensor_spec.TensorSpec([], dtypes.string)
@tf_export("data.TextLineDataset", v1=[])
class TextLineDatasetV2(dataset_ops.DatasetSource):
"""A `Dataset` comprising lines from one or more text files."""
def __init__(self,
filenames,
compression_type=None,
buffer_size=None,
num_parallel_reads=None):
"""Creates a `TextLineDataset`.
Args:
filenames: A `tf.string` tensor or `tf.data.Dataset` containing one or
more filenames.
compression_type: (Optional.) A `tf.string` scalar evaluating to one of
`""` (no compression), `"ZLIB"`, or `"GZIP"`.
buffer_size: (Optional.) A `tf.int64` scalar denoting the number of bytes
to buffer. A value of 0 results in the default buffering values chosen
based on the compression type.
num_parallel_reads: (Optional.) A `tf.int64` scalar representing the
number of files to read in parallel. If greater than one, the records of
files read in parallel are outputted in an interleaved order. If your
input pipeline is I/O bottlenecked, consider setting this parameter to a
value greater than one to parallelize the I/O. If `None`, files will be
read sequentially.
"""
filenames = _create_or_validate_filenames_dataset(filenames)
self._filenames = filenames
self._compression_type = compression_type
self._buffer_size = buffer_size
def creator_fn(filename):
return _TextLineDataset(filename, compression_type, buffer_size)
self._impl = _create_dataset_reader(creator_fn, filenames,
num_parallel_reads)
variant_tensor = self._impl._variant_tensor # pylint: disable=protected-access
super(TextLineDatasetV2, self).__init__(variant_tensor)
@property
def element_spec(self):
return tensor_spec.TensorSpec([], dtypes.string)
@tf_export(v1=["data.TextLineDataset"])
class TextLineDatasetV1(dataset_ops.DatasetV1Adapter):
"""A `Dataset` comprising lines from one or more text files."""
def __init__(self,
filenames,
compression_type=None,
buffer_size=None,
num_parallel_reads=None):
wrapped = TextLineDatasetV2(filenames, compression_type, buffer_size,
num_parallel_reads)
super(TextLineDatasetV1, self).__init__(wrapped)
__init__.__doc__ = TextLineDatasetV2.__init__.__doc__
@property
def _filenames(self):
return self._dataset._filenames # pylint: disable=protected-access
@_filenames.setter
def _filenames(self, value):
self._dataset._filenames = value # pylint: disable=protected-access
class _TFRecordDataset(dataset_ops.DatasetSource):
"""A `Dataset` comprising records from one or more TFRecord files."""
def __init__(self, filenames, compression_type=None, buffer_size=None):
"""Creates a `TFRecordDataset`.
Args:
filenames: A `tf.string` tensor containing one or more filenames.
compression_type: (Optional.) A `tf.string` scalar evaluating to one of
`""` (no compression), `"ZLIB"`, or `"GZIP"`.
buffer_size: (Optional.) A `tf.int64` scalar representing the number of
bytes in the read buffer. 0 means no buffering.
"""
self._filenames = filenames
self._compression_type = convert.optional_param_to_tensor(
"compression_type",
compression_type,
argument_default="",
argument_dtype=dtypes.string)
self._buffer_size = convert.optional_param_to_tensor(
"buffer_size",
buffer_size,
argument_default=_DEFAULT_READER_BUFFER_SIZE_BYTES)
variant_tensor = gen_dataset_ops.tf_record_dataset(self._filenames,
self._compression_type,
self._buffer_size)
super(_TFRecordDataset, self).__init__(variant_tensor)
@property
def element_spec(self):
return tensor_spec.TensorSpec([], dtypes.string)
class ParallelInterleaveDataset(dataset_ops.UnaryDataset):
"""A `Dataset` that maps a function over its input and flattens the result."""
def __init__(self, input_dataset, map_func, cycle_length, block_length,
sloppy, buffer_output_elements, prefetch_input_elements):
"""See `tf.data.experimental.parallel_interleave()` for details."""
self._input_dataset = input_dataset
self._map_func = dataset_ops.StructuredFunctionWrapper(
map_func, self._transformation_name(), dataset=input_dataset)
if not isinstance(self._map_func.output_structure, dataset_ops.DatasetSpec):
raise TypeError("`map_func` must return a `Dataset` object.")
self._element_spec = self._map_func.output_structure._element_spec # pylint: disable=protected-access
self._cycle_length = ops.convert_to_tensor(
cycle_length, dtype=dtypes.int64, name="cycle_length")
self._block_length = ops.convert_to_tensor(
block_length, dtype=dtypes.int64, name="block_length")
self._buffer_output_elements = convert.optional_param_to_tensor(
"buffer_output_elements",
buffer_output_elements,
argument_default=2 * block_length)
self._prefetch_input_elements = convert.optional_param_to_tensor(
"prefetch_input_elements",
prefetch_input_elements,
argument_default=2 * cycle_length)
if sloppy is None:
self._deterministic = "default"
elif sloppy:
self._deterministic = "false"
else:
self._deterministic = "true"
variant_tensor = ged_ops.legacy_parallel_interleave_dataset_v2(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
self._map_func.function.captured_inputs,
self._cycle_length,
self._block_length,
self._buffer_output_elements,
self._prefetch_input_elements,
f=self._map_func.function,
deterministic=self._deterministic,
**self._flat_structure)
super(ParallelInterleaveDataset, self).__init__(input_dataset,
variant_tensor)
def _functions(self):
return [self._map_func]
@property
def element_spec(self):
return self._element_spec
def _transformation_name(self):
return "tf.data.experimental.parallel_interleave()"
@tf_export("data.TFRecordDataset", v1=[])
class TFRecordDatasetV2(dataset_ops.DatasetV2):
"""A `Dataset` comprising records from one or more TFRecord files."""
def __init__(self,
filenames,
compression_type=None,
buffer_size=None,
num_parallel_reads=None):
"""Creates a `TFRecordDataset` to read one or more TFRecord files.
Args:
filenames: A `tf.string` tensor or `tf.data.Dataset` containing one or
more filenames.
compression_type: (Optional.) A `tf.string` scalar evaluating to one of
`""` (no compression), `"ZLIB"`, or `"GZIP"`.
buffer_size: (Optional.) A `tf.int64` scalar representing the number of
bytes in the read buffer. If your input pipeline is I/O bottlenecked,
consider setting this parameter to a value 1-100 MBs. If `None`, a
sensible default for both local and remote file systems is used.
num_parallel_reads: (Optional.) A `tf.int64` scalar representing the
number of files to read in parallel. If greater than one, the records of
files read in parallel are outputted in an interleaved order. If your
input pipeline is I/O bottlenecked, consider setting this parameter to a
value greater than one to parallelize the I/O. If `None`, files will be
read sequentially.
Raises:
TypeError: If any argument does not have the expected type.
ValueError: If any argument does not have the expected shape.
"""
filenames = _create_or_validate_filenames_dataset(filenames)
self._filenames = filenames
self._compression_type = compression_type
self._buffer_size = buffer_size
self._num_parallel_reads = num_parallel_reads
def creator_fn(filename):
return _TFRecordDataset(filename, compression_type, buffer_size)
self._impl = _create_dataset_reader(creator_fn, filenames,
num_parallel_reads)
variant_tensor = self._impl._variant_tensor # pylint: disable=protected-access
super(TFRecordDatasetV2, self).__init__(variant_tensor)
def _clone(self,
filenames=None,
compression_type=None,
buffer_size=None,
num_parallel_reads=None):
return TFRecordDatasetV2(filenames or self._filenames, compression_type or
self._compression_type, buffer_size or
self._buffer_size, num_parallel_reads or
self._num_parallel_reads)
def _inputs(self):
return self._impl._inputs() # pylint: disable=protected-access
@property
def element_spec(self):
return tensor_spec.TensorSpec([], dtypes.string)
@tf_export(v1=["data.TFRecordDataset"])
class TFRecordDatasetV1(dataset_ops.DatasetV1Adapter):
"""A `Dataset` comprising records from one or more TFRecord files."""
def __init__(self,
filenames,
compression_type=None,
buffer_size=None,
num_parallel_reads=None):
wrapped = TFRecordDatasetV2(filenames, compression_type, buffer_size,
num_parallel_reads)
super(TFRecordDatasetV1, self).__init__(wrapped)
__init__.__doc__ = TFRecordDatasetV2.__init__.__doc__
def _clone(self,
filenames=None,
compression_type=None,
buffer_size=None,
num_parallel_reads=None):
# pylint: disable=protected-access
return TFRecordDatasetV1(
filenames or self._dataset._filenames, compression_type or
self._dataset._compression_type, buffer_size or
self._dataset._buffer_size, num_parallel_reads or
self._dataset._num_parallel_reads)
@property
def _filenames(self):
return self._dataset._filenames # pylint: disable=protected-access
@_filenames.setter
def _filenames(self, value):
self._dataset._filenames = value # pylint: disable=protected-access
class _FixedLengthRecordDataset(dataset_ops.DatasetSource):
"""A `Dataset` of fixed-length records from one or more binary files."""
def __init__(self,
filenames,
record_bytes,
header_bytes=None,
footer_bytes=None,
buffer_size=None,
compression_type=None):
"""Creates a `FixedLengthRecordDataset`.
Args:
filenames: A `tf.string` tensor containing one or more filenames.
record_bytes: A `tf.int64` scalar representing the number of bytes in each
record.
header_bytes: (Optional.) A `tf.int64` scalar representing the number of
bytes to skip at the start of a file.
footer_bytes: (Optional.) A `tf.int64` scalar representing the number of
bytes to ignore at the end of a file.
buffer_size: (Optional.) A `tf.int64` scalar representing the number of
bytes to buffer when reading.
compression_type: (Optional.) A `tf.string` scalar evaluating to one of
`""` (no compression), `"ZLIB"`, or `"GZIP"`.
"""
self._filenames = filenames
self._record_bytes = ops.convert_to_tensor(
record_bytes, dtype=dtypes.int64, name="record_bytes")
self._header_bytes = convert.optional_param_to_tensor(
"header_bytes", header_bytes)
self._footer_bytes = convert.optional_param_to_tensor(
"footer_bytes", footer_bytes)
self._buffer_size = convert.optional_param_to_tensor(
"buffer_size", buffer_size, _DEFAULT_READER_BUFFER_SIZE_BYTES)
self._compression_type = convert.optional_param_to_tensor(
"compression_type",
compression_type,
argument_default="",
argument_dtype=dtypes.string)
variant_tensor = gen_dataset_ops.fixed_length_record_dataset_v2(
self._filenames, self._header_bytes, self._record_bytes,
self._footer_bytes, self._buffer_size, self._compression_type)
super(_FixedLengthRecordDataset, self).__init__(variant_tensor)
@property
def element_spec(self):
return tensor_spec.TensorSpec([], dtypes.string)
@tf_export("data.FixedLengthRecordDataset", v1=[])
class FixedLengthRecordDatasetV2(dataset_ops.DatasetSource):
"""A `Dataset` of fixed-length records from one or more binary files."""
def __init__(self,
filenames,
record_bytes,
header_bytes=None,
footer_bytes=None,
buffer_size=None,
compression_type=None,
num_parallel_reads=None):
"""Creates a `FixedLengthRecordDataset`.
Args:
filenames: A `tf.string` tensor or `tf.data.Dataset` containing one or
more filenames.
record_bytes: A `tf.int64` scalar representing the number of bytes in each
record.
header_bytes: (Optional.) A `tf.int64` scalar representing the number of
bytes to skip at the start of a file.
footer_bytes: (Optional.) A `tf.int64` scalar representing the number of
bytes to ignore at the end of a file.
buffer_size: (Optional.) A `tf.int64` scalar representing the number of
bytes to buffer when reading.
compression_type: (Optional.) A `tf.string` scalar evaluating to one of
`""` (no compression), `"ZLIB"`, or `"GZIP"`.
num_parallel_reads: (Optional.) A `tf.int64` scalar representing the
number of files to read in parallel. If greater than one, the records of
files read in parallel are outputted in an interleaved order. If your
input pipeline is I/O bottlenecked, consider setting this parameter to a
value greater than one to parallelize the I/O. If `None`, files will be
read sequentially.
"""
filenames = _create_or_validate_filenames_dataset(filenames)
self._filenames = filenames
self._record_bytes = record_bytes
self._header_bytes = header_bytes
self._footer_bytes = footer_bytes
self._buffer_size = buffer_size
self._compression_type = compression_type
def creator_fn(filename):
return _FixedLengthRecordDataset(filename, record_bytes, header_bytes,
footer_bytes, buffer_size,
compression_type)
self._impl = _create_dataset_reader(creator_fn, filenames,
num_parallel_reads)
variant_tensor = self._impl._variant_tensor # pylint: disable=protected-access
super(FixedLengthRecordDatasetV2, self).__init__(variant_tensor)
@property
def element_spec(self):
return tensor_spec.TensorSpec([], dtypes.string)
@tf_export(v1=["data.FixedLengthRecordDataset"])
class FixedLengthRecordDatasetV1(dataset_ops.DatasetV1Adapter):
"""A `Dataset` of fixed-length records from one or more binary files."""
def __init__(self,
filenames,
record_bytes,
header_bytes=None,
footer_bytes=None,
buffer_size=None,
compression_type=None,
num_parallel_reads=None):
wrapped = FixedLengthRecordDatasetV2(filenames, record_bytes, header_bytes,
footer_bytes, buffer_size,
compression_type, num_parallel_reads)
super(FixedLengthRecordDatasetV1, self).__init__(wrapped)
__init__.__doc__ = FixedLengthRecordDatasetV2.__init__.__doc__
@property
def _filenames(self):
return self._dataset._filenames # pylint: disable=protected-access
@_filenames.setter
def _filenames(self, value):
self._dataset._filenames = value # pylint: disable=protected-access
if tf2.enabled():
FixedLengthRecordDataset = FixedLengthRecordDatasetV2
TFRecordDataset = TFRecordDatasetV2
TextLineDataset = TextLineDatasetV2
else:
FixedLengthRecordDataset = FixedLengthRecordDatasetV1
TFRecordDataset = TFRecordDatasetV1
TextLineDataset = TextLineDatasetV1