This removes common logic to iterate through partitions, and flattening supported nodes into one vector. PiperOrigin-RevId: 313746666 Change-Id: I703bea87cac0ea0ffe25d5a8e11e052465e15f34
158 lines
4.8 KiB
C++
158 lines
4.8 KiB
C++
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
#include "tensorflow/lite/util.h"
|
|
|
|
#include <complex>
|
|
#include <cstring>
|
|
|
|
#include "tensorflow/lite/builtin_ops.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/schema/schema_generated.h"
|
|
|
|
namespace tflite {
|
|
namespace {
|
|
|
|
TfLiteStatus UnresolvedOpInvoke(TfLiteContext* context, TfLiteNode* node) {
|
|
context->ReportError(context,
|
|
"Encountered an unresolved custom op. Did you miss "
|
|
"a custom op or delegate?");
|
|
return kTfLiteError;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
bool IsFlexOp(const char* custom_name) {
|
|
return custom_name && strncmp(custom_name, kFlexCustomCodePrefix,
|
|
strlen(kFlexCustomCodePrefix)) == 0;
|
|
}
|
|
|
|
std::unique_ptr<TfLiteIntArray, TfLiteIntArrayDeleter> BuildTfLiteIntArray(
|
|
const std::vector<int>& data) {
|
|
std::unique_ptr<TfLiteIntArray, TfLiteIntArrayDeleter> result(
|
|
TfLiteIntArrayCreate(data.size()));
|
|
std::copy(data.begin(), data.end(), result->data);
|
|
return result;
|
|
}
|
|
|
|
TfLiteIntArray* ConvertVectorToTfLiteIntArray(const std::vector<int>& input) {
|
|
return ConvertArrayToTfLiteIntArray(static_cast<int>(input.size()),
|
|
input.data());
|
|
}
|
|
|
|
TfLiteIntArray* ConvertArrayToTfLiteIntArray(const int rank, const int* dims) {
|
|
TfLiteIntArray* output = TfLiteIntArrayCreate(rank);
|
|
for (size_t i = 0; i < rank; i++) {
|
|
output->data[i] = dims[i];
|
|
}
|
|
return output;
|
|
}
|
|
|
|
bool EqualArrayAndTfLiteIntArray(const TfLiteIntArray* a, const int b_size,
|
|
const int* b) {
|
|
if (!a) return false;
|
|
if (a->size != b_size) return false;
|
|
for (int i = 0; i < a->size; ++i) {
|
|
if (a->data[i] != b[i]) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
size_t CombineHashes(std::initializer_list<size_t> hashes) {
|
|
size_t result = 0;
|
|
// Hash combiner used by TensorFlow core.
|
|
for (size_t hash : hashes) {
|
|
result = result ^
|
|
(hash + 0x9e3779b97f4a7800ULL + (result << 10) + (result >> 4));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
TfLiteStatus GetSizeOfType(TfLiteContext* context, const TfLiteType type,
|
|
size_t* bytes) {
|
|
// TODO(levp): remove the default case so that new types produce compilation
|
|
// error.
|
|
switch (type) {
|
|
case kTfLiteFloat32:
|
|
*bytes = sizeof(float);
|
|
break;
|
|
case kTfLiteInt32:
|
|
*bytes = sizeof(int);
|
|
break;
|
|
case kTfLiteUInt8:
|
|
*bytes = sizeof(uint8_t);
|
|
break;
|
|
case kTfLiteInt64:
|
|
*bytes = sizeof(int64_t);
|
|
break;
|
|
case kTfLiteBool:
|
|
*bytes = sizeof(bool);
|
|
break;
|
|
case kTfLiteComplex64:
|
|
*bytes = sizeof(std::complex<float>);
|
|
break;
|
|
case kTfLiteInt16:
|
|
*bytes = sizeof(int16_t);
|
|
break;
|
|
case kTfLiteInt8:
|
|
*bytes = sizeof(int8_t);
|
|
break;
|
|
case kTfLiteFloat16:
|
|
*bytes = sizeof(TfLiteFloat16);
|
|
break;
|
|
case kTfLiteFloat64:
|
|
*bytes = sizeof(double);
|
|
break;
|
|
default:
|
|
if (context) {
|
|
context->ReportError(
|
|
context,
|
|
"Type %d is unsupported. Only float32, int8, int16, int32, int64, "
|
|
"uint8, bool, complex64 supported currently.",
|
|
type);
|
|
}
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteRegistration CreateUnresolvedCustomOp(const char* custom_op_name) {
|
|
return TfLiteRegistration{nullptr,
|
|
nullptr,
|
|
nullptr,
|
|
/*invoke*/ &UnresolvedOpInvoke,
|
|
nullptr,
|
|
BuiltinOperator_CUSTOM,
|
|
custom_op_name,
|
|
1};
|
|
}
|
|
|
|
bool IsUnresolvedCustomOp(const TfLiteRegistration& registration) {
|
|
return registration.builtin_code == tflite::BuiltinOperator_CUSTOM &&
|
|
registration.invoke == &UnresolvedOpInvoke;
|
|
}
|
|
|
|
std::string GetOpNameByRegistration(const TfLiteRegistration& registration) {
|
|
auto op = registration.builtin_code;
|
|
std::string result =
|
|
EnumNameBuiltinOperator(static_cast<BuiltinOperator>(op));
|
|
if ((op == kTfLiteBuiltinCustom || op == kTfLiteBuiltinDelegate) &&
|
|
registration.custom_name) {
|
|
result += " " + std::string(registration.custom_name);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
} // namespace tflite
|