STT-tensorflow/tensorflow/lite/schema/schema_v2.fbs

304 lines
7.0 KiB
Plaintext

// Copyright 2017 The TensorFlow Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Revision History
// Version 0: Initial version.
// Version 1: Add subgraphs to schema.
// Version 2: Rename operators to conform to NN API.
namespace tflite;
// The type of data stored in a tensor.
enum TensorType : byte {
FLOAT32 = 0,
FLOAT16 = 1,
INT32 = 2,
UINT8 = 3,
INT64 = 4,
STRING = 5,
}
// Parameters for converting a quantized tensor back to float. Given a
// quantized value q, the corresponding float value f should be:
// f = scale * (q - zero_point)
table QuantizationParameters {
min:[float]; // For importing back into tensorflow.
max:[float]; // For importing back into tensorflow.
scale:[float];
zero_point:[long];
}
table Tensor {
// The tensor shape. The meaning of each entry is operator-specific but
// builtin ops use: [batch size, height, width, number of channels] (That's
// Tensorflow's NHWC).
shape:[int];
type:TensorType;
// The data_buffer is an opaque container, with the assumption that the
// target device is little-endian. In addition, all builtin operators assume
// the memory is ordered such that if `shape` is [4, 3, 2], then index
// [i, j, k] maps to data_buffer[i*3*2 + j*3 + k].
data_buffer:[ubyte];
name:string; // For debugging and importing back into tensorflow.
quantization:QuantizationParameters; // Optional.
}
// A list of builtin operators. Builtin operators are slightly faster than custom
// ones, but not by much. Moreover, while custom operators accept an opaque
// object containing configuration parameters, builtins have a predetermined
// set of acceptable options.
enum BuiltinOperator : byte {
ADD = 0,
AVERAGE_POOL_2D = 1,
CONCATENATION = 2,
CONV_2D = 3,
DEPTHWISE_CONV_2D = 4,
// DEPTH_TO_SPACE = 5,
// DEQUANTIZE = 6,
EMBEDDING_LOOKUP = 7,
// FLOOR = 8,
FULLY_CONNECTED = 9,
HASHTABLE_LOOKUP = 10,
L2_NORMALIZATION = 11,
L2_POOL_2D = 12,
LOCAL_RESPONSE_NORMALIZATION = 13,
LOGISTIC = 14,
LSH_PROJECTION = 15,
LSTM = 16,
MAX_POOL_2D = 17,
// MUL = 18,
RELU = 19,
// RELU1=20,
RELU6 = 21,
RESHAPE = 22,
RESIZE_BILINEAR = 23,
RNN = 24,
SOFTMAX = 25,
SPACE_TO_DEPTH = 26,
SVDF = 27,
TANH = 28,
// TODO(aselle): Consider rename to CONCATENATE_EMBEDDINGS
CONCAT_EMBEDDINGS = 29,
SKIP_GRAM = 30,
CALL = 31,
CUSTOM = 32,
}
// Options for the builtin operators.
union BuiltinOptions {
Conv2DOptions,
DepthwiseConv2DOptions,
ConcatEmbeddingsOptions,
LSHProjectionOptions,
Pool2DOptions,
SVDFOptions,
RNNOptions,
FullyConnectedOptions,
SoftmaxOptions,
ConcatenationOptions,
AddOptions,
L2NormOptions,
LocalResponseNormalizationOptions,
LSTMOptions,
ResizeBilinearOptions,
CallOptions,
ReshapeOptions,
SkipGramOptions,
SpaceToDepthOptions,
}
enum Padding : byte { SAME, VALID }
enum ActivationFunctionType : byte {
NONE = 0,
RELU = 1,
RELU1 = 2,
RELU6 = 3,
TANH = 4,
SIGN_BIT = 5,
}
table Conv2DOptions {
padding:Padding;
stride_w:int;
stride_h:int;
fused_activation_function:ActivationFunctionType;
}
table Pool2DOptions {
padding:Padding;
stride_w:int;
stride_h:int;
filter_width:int;
filter_height:int;
fused_activation_function:ActivationFunctionType;
}
table DepthwiseConv2DOptions {
padding:Padding;
stride_w:int;
stride_h:int;
depth_multiplier:int;
fused_activation_function:ActivationFunctionType;
}
table ConcatEmbeddingsOptions {
num_channels:int;
num_columns_per_channel:[int];
embedding_dim_per_channel:[int]; // This could be inferred from parameters.
}
enum LSHProjectionType: byte {
UNKNOWN = 0,
SPARSE = 1,
DENSE = 2,
}
table LSHProjectionOptions {
type: LSHProjectionType;
}
table SVDFOptions {
rank:int;
fused_activation_function:ActivationFunctionType;
}
// An implementation of TensorFlow RNNCell.
table RNNOptions {
fused_activation_function:ActivationFunctionType;
}
// An implementation of TensorFlow fully_connected (a.k.a Dense) layer.
table FullyConnectedOptions {
fused_activation_function:ActivationFunctionType;
}
table SoftmaxOptions {
beta: float;
}
// An implementation of TensorFlow concat.
table ConcatenationOptions {
axis:int;
fused_activation_function:ActivationFunctionType;
}
table AddOptions {
fused_activation_function:ActivationFunctionType;
}
table L2NormOptions {
fused_activation_function:ActivationFunctionType;
}
table LocalResponseNormalizationOptions {
radius:int;
bias:float;
alpha:float;
beta:float;
}
// An implementation of TensorFlow LSTMCell and CoupledInputForgetGateLSTMCell
table LSTMOptions {
fused_activation_function:ActivationFunctionType;
cell_clip: float; // Optional, 0.0 means no clipping
proj_clip: float; // Optional, 0.0 means no clipping
}
table ResizeBilinearOptions {
new_height:int;
new_width:int;
}
// A call operation options
table CallOptions {
// The subgraph index that needs to be called.
subgraph:int;
}
table ReshapeOptions {
new_shape:[int];
}
table SkipGramOptions {
ngram_size: int;
max_skip_size: int;
include_all_ngrams: bool;
}
table SpaceToDepthOptions {
block_size: int;
}
// An OperatorCode can be an enum value (BuiltinOperator) if the operator is a
// builtin, or a string if the operator is custom.
table OperatorCode {
builtin_code:BuiltinOperator;
custom_code:string;
}
// An operator takes tensors as inputs and outputs. The type of operation being
// performed is determined by an index into the list of valid OperatorCodes,
// while the specifics of each operations is configured using builtin_options
// or custom_options.
table Operator {
// Index into the operator_codes array. Using an integer here avoids
// complicate map lookups.
opcode_index:int;
inputs:[int];
outputs:[int];
builtin_options:BuiltinOptions;
custom_options:[ubyte];
}
// The root type, defining a model.
table SubGraph {
// A list of all tensors used in this model.
tensors:[Tensor];
// Indices of the input tensors.
inputs:[int];
// Indices of the output tensors.
outputs:[int];
// All operators, in execution order.
operators:[Operator];
// Name of subgraph (used for debugging).
name:string;
}
table Model {
// Version of the schema.
version:int;
// A list of all operator codes used in this model. This is
// kept in order because operators carry an index into this
// vector.
operator_codes:[OperatorCode];
// All the subgraphs of the model. The 0th is assumed to be the main
// model.
subgraphs:[SubGraph];
// A description of the model.
description:string;
}
root_type Model;