304 lines
7.0 KiB
Plaintext
304 lines
7.0 KiB
Plaintext
// Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
// Revision History
|
|
// Version 0: Initial version.
|
|
// Version 1: Add subgraphs to schema.
|
|
// Version 2: Rename operators to conform to NN API.
|
|
|
|
namespace tflite;
|
|
|
|
// The type of data stored in a tensor.
|
|
enum TensorType : byte {
|
|
FLOAT32 = 0,
|
|
FLOAT16 = 1,
|
|
INT32 = 2,
|
|
UINT8 = 3,
|
|
INT64 = 4,
|
|
STRING = 5,
|
|
}
|
|
|
|
// Parameters for converting a quantized tensor back to float. Given a
|
|
// quantized value q, the corresponding float value f should be:
|
|
// f = scale * (q - zero_point)
|
|
table QuantizationParameters {
|
|
min:[float]; // For importing back into tensorflow.
|
|
max:[float]; // For importing back into tensorflow.
|
|
scale:[float];
|
|
zero_point:[long];
|
|
}
|
|
|
|
table Tensor {
|
|
// The tensor shape. The meaning of each entry is operator-specific but
|
|
// builtin ops use: [batch size, height, width, number of channels] (That's
|
|
// Tensorflow's NHWC).
|
|
shape:[int];
|
|
type:TensorType;
|
|
// The data_buffer is an opaque container, with the assumption that the
|
|
// target device is little-endian. In addition, all builtin operators assume
|
|
// the memory is ordered such that if `shape` is [4, 3, 2], then index
|
|
// [i, j, k] maps to data_buffer[i*3*2 + j*3 + k].
|
|
data_buffer:[ubyte];
|
|
name:string; // For debugging and importing back into tensorflow.
|
|
quantization:QuantizationParameters; // Optional.
|
|
}
|
|
|
|
// A list of builtin operators. Builtin operators are slightly faster than custom
|
|
// ones, but not by much. Moreover, while custom operators accept an opaque
|
|
// object containing configuration parameters, builtins have a predetermined
|
|
// set of acceptable options.
|
|
enum BuiltinOperator : byte {
|
|
ADD = 0,
|
|
AVERAGE_POOL_2D = 1,
|
|
CONCATENATION = 2,
|
|
CONV_2D = 3,
|
|
DEPTHWISE_CONV_2D = 4,
|
|
// DEPTH_TO_SPACE = 5,
|
|
// DEQUANTIZE = 6,
|
|
EMBEDDING_LOOKUP = 7,
|
|
// FLOOR = 8,
|
|
FULLY_CONNECTED = 9,
|
|
HASHTABLE_LOOKUP = 10,
|
|
L2_NORMALIZATION = 11,
|
|
L2_POOL_2D = 12,
|
|
LOCAL_RESPONSE_NORMALIZATION = 13,
|
|
LOGISTIC = 14,
|
|
LSH_PROJECTION = 15,
|
|
LSTM = 16,
|
|
MAX_POOL_2D = 17,
|
|
// MUL = 18,
|
|
RELU = 19,
|
|
// RELU1=20,
|
|
RELU6 = 21,
|
|
RESHAPE = 22,
|
|
RESIZE_BILINEAR = 23,
|
|
RNN = 24,
|
|
SOFTMAX = 25,
|
|
SPACE_TO_DEPTH = 26,
|
|
SVDF = 27,
|
|
TANH = 28,
|
|
// TODO(aselle): Consider rename to CONCATENATE_EMBEDDINGS
|
|
CONCAT_EMBEDDINGS = 29,
|
|
SKIP_GRAM = 30,
|
|
CALL = 31,
|
|
CUSTOM = 32,
|
|
|
|
}
|
|
|
|
// Options for the builtin operators.
|
|
union BuiltinOptions {
|
|
Conv2DOptions,
|
|
DepthwiseConv2DOptions,
|
|
ConcatEmbeddingsOptions,
|
|
LSHProjectionOptions,
|
|
Pool2DOptions,
|
|
SVDFOptions,
|
|
RNNOptions,
|
|
FullyConnectedOptions,
|
|
SoftmaxOptions,
|
|
ConcatenationOptions,
|
|
AddOptions,
|
|
L2NormOptions,
|
|
LocalResponseNormalizationOptions,
|
|
LSTMOptions,
|
|
ResizeBilinearOptions,
|
|
CallOptions,
|
|
ReshapeOptions,
|
|
SkipGramOptions,
|
|
SpaceToDepthOptions,
|
|
}
|
|
|
|
enum Padding : byte { SAME, VALID }
|
|
|
|
enum ActivationFunctionType : byte {
|
|
NONE = 0,
|
|
RELU = 1,
|
|
RELU1 = 2,
|
|
RELU6 = 3,
|
|
TANH = 4,
|
|
SIGN_BIT = 5,
|
|
}
|
|
|
|
table Conv2DOptions {
|
|
padding:Padding;
|
|
stride_w:int;
|
|
stride_h:int;
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table Pool2DOptions {
|
|
padding:Padding;
|
|
stride_w:int;
|
|
stride_h:int;
|
|
filter_width:int;
|
|
filter_height:int;
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table DepthwiseConv2DOptions {
|
|
padding:Padding;
|
|
stride_w:int;
|
|
stride_h:int;
|
|
depth_multiplier:int;
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table ConcatEmbeddingsOptions {
|
|
num_channels:int;
|
|
num_columns_per_channel:[int];
|
|
embedding_dim_per_channel:[int]; // This could be inferred from parameters.
|
|
}
|
|
|
|
enum LSHProjectionType: byte {
|
|
UNKNOWN = 0,
|
|
SPARSE = 1,
|
|
DENSE = 2,
|
|
}
|
|
|
|
table LSHProjectionOptions {
|
|
type: LSHProjectionType;
|
|
}
|
|
|
|
table SVDFOptions {
|
|
rank:int;
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
// An implementation of TensorFlow RNNCell.
|
|
table RNNOptions {
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
// An implementation of TensorFlow fully_connected (a.k.a Dense) layer.
|
|
table FullyConnectedOptions {
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table SoftmaxOptions {
|
|
beta: float;
|
|
}
|
|
|
|
// An implementation of TensorFlow concat.
|
|
table ConcatenationOptions {
|
|
axis:int;
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table AddOptions {
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table L2NormOptions {
|
|
fused_activation_function:ActivationFunctionType;
|
|
}
|
|
|
|
table LocalResponseNormalizationOptions {
|
|
radius:int;
|
|
bias:float;
|
|
alpha:float;
|
|
beta:float;
|
|
}
|
|
|
|
// An implementation of TensorFlow LSTMCell and CoupledInputForgetGateLSTMCell
|
|
table LSTMOptions {
|
|
fused_activation_function:ActivationFunctionType;
|
|
cell_clip: float; // Optional, 0.0 means no clipping
|
|
proj_clip: float; // Optional, 0.0 means no clipping
|
|
}
|
|
|
|
table ResizeBilinearOptions {
|
|
new_height:int;
|
|
new_width:int;
|
|
}
|
|
|
|
// A call operation options
|
|
table CallOptions {
|
|
// The subgraph index that needs to be called.
|
|
subgraph:int;
|
|
}
|
|
|
|
table ReshapeOptions {
|
|
new_shape:[int];
|
|
}
|
|
|
|
table SkipGramOptions {
|
|
ngram_size: int;
|
|
max_skip_size: int;
|
|
include_all_ngrams: bool;
|
|
}
|
|
|
|
table SpaceToDepthOptions {
|
|
block_size: int;
|
|
}
|
|
|
|
// An OperatorCode can be an enum value (BuiltinOperator) if the operator is a
|
|
// builtin, or a string if the operator is custom.
|
|
table OperatorCode {
|
|
builtin_code:BuiltinOperator;
|
|
custom_code:string;
|
|
}
|
|
|
|
// An operator takes tensors as inputs and outputs. The type of operation being
|
|
// performed is determined by an index into the list of valid OperatorCodes,
|
|
// while the specifics of each operations is configured using builtin_options
|
|
// or custom_options.
|
|
table Operator {
|
|
// Index into the operator_codes array. Using an integer here avoids
|
|
// complicate map lookups.
|
|
opcode_index:int;
|
|
|
|
inputs:[int];
|
|
outputs:[int];
|
|
|
|
builtin_options:BuiltinOptions;
|
|
custom_options:[ubyte];
|
|
}
|
|
|
|
// The root type, defining a model.
|
|
table SubGraph {
|
|
// A list of all tensors used in this model.
|
|
tensors:[Tensor];
|
|
|
|
// Indices of the input tensors.
|
|
inputs:[int];
|
|
|
|
// Indices of the output tensors.
|
|
outputs:[int];
|
|
|
|
// All operators, in execution order.
|
|
operators:[Operator];
|
|
|
|
// Name of subgraph (used for debugging).
|
|
name:string;
|
|
}
|
|
|
|
table Model {
|
|
// Version of the schema.
|
|
version:int;
|
|
|
|
// A list of all operator codes used in this model. This is
|
|
// kept in order because operators carry an index into this
|
|
// vector.
|
|
operator_codes:[OperatorCode];
|
|
|
|
// All the subgraphs of the model. The 0th is assumed to be the main
|
|
// model.
|
|
subgraphs:[SubGraph];
|
|
|
|
// A description of the model.
|
|
description:string;
|
|
}
|
|
|
|
root_type Model;
|