STT-tensorflow/tensorflow/lite/python/convert.py

606 lines
25 KiB
Python

# Lint as: python2, python3
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Converts a frozen graph into a TFLite FlatBuffer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import distutils.spawn
import enum # pylint: disable=g-bad-import-order
import os as _os
import platform as _platform
import subprocess as _subprocess
import tempfile as _tempfile
import six
from six.moves import map
from tensorflow.lite.python import lite_constants
from tensorflow.lite.python import util
from tensorflow.lite.python import wrap_toco
from tensorflow.lite.toco import model_flags_pb2 as _model_flags_pb2
from tensorflow.lite.toco import toco_flags_pb2 as _toco_flags_pb2
from tensorflow.lite.toco import types_pb2 as _types_pb2
from tensorflow.python.framework import tensor_shape
from tensorflow.python.platform import resource_loader as _resource_loader
from tensorflow.python.util import deprecation
from tensorflow.python.util.tf_export import tf_export as _tf_export
_quantized_inference_types = [_types_pb2.QUANTIZED_UINT8, _types_pb2.INT8]
# If the `inference_type` or the `inference_input_type` is the quantized type
# and it is not post training quantization, the input quantization stats is
# required.
def _requires_input_stats(toco_flags):
return ((toco_flags.inference_type in _quantized_inference_types or
toco_flags.inference_input_type in _quantized_inference_types) and
not toco_flags.post_training_quantize)
# Find the toco_from_protos binary using the resource loader if using from
# bazel, otherwise we are in a pip where console_scripts already has
# the toco_from_protos tool.
if lite_constants.EXPERIMENTAL_USE_TOCO_API_DIRECTLY:
_toco_from_proto_bin = ""
else:
_toco_from_proto_bin = _resource_loader.get_path_to_datafile(
"../toco/python/toco_from_protos")
if _toco_from_proto_bin and not _os.path.exists(_toco_from_proto_bin):
_toco_from_proto_bin = "toco_from_protos"
def _try_convert_to_unicode(output):
if output is None:
return u""
if isinstance(output, bytes):
try:
return six.ensure_text(output)
except UnicodeDecodeError:
pass
return output
@_tf_export("lite.OpsSet")
class OpsSet(enum.Enum):
"""Enum class defining the sets of ops available to generate TFLite models.
WARNING: Experimental interface, subject to change.
"""
# Convert model using TensorFlow Lite builtin ops.
TFLITE_BUILTINS = "TFLITE_BUILTINS"
# Convert model using TensorFlow ops. Not all TensorFlow ops are available.
# WARNING: Experimental interface, subject to change.
SELECT_TF_OPS = "SELECT_TF_OPS"
# Convert model using only TensorFlow Lite quantized int8 operations.
# Specifying this will throw an error for operations that do not yet have
# quantized implementations.
TFLITE_BUILTINS_INT8 = "TFLITE_BUILTINS_INT8"
# Convert model using only TensorFlow Lite operations with quantized int8
# weights, int16 activations and int64 bias.
# Specifying this will throw an error for operations that do not yet have
# quantized implementations.
# This quantization mode may be used in models for super-resolution,
# audio signal processing or image de-noising. It improves accuracy
# significantly, but only slightly increases the model size.
# WARNING: These ops are currently experimental and have not yet been
# finalized.
# They are only compatible with CPU execution, and have not been optimized for
# production.
EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8 = \
"EXPERIMENTAL_TFLITE_BUILTINS_ACTIVATIONS_INT16_WEIGHTS_INT8"
def __str__(self):
return self.value
@staticmethod
def get_options():
"""Returns a list of OpsSet options as a list of strings."""
return [str(option) for option in list(OpsSet)]
class ConverterError(Exception):
"""Raised when an error occurs during model conversion."""
pass
def mlir_quantize(input_data_str,
disable_per_channel=False,
fully_quantize=False,
inference_type=_types_pb2.INT8):
"""Quantize `input_data_str` with calibration results.
Args:
input_data_str: Input data in serialized form (e.g. a TFLITE model with
calibration results).
disable_per_channel: Bool indicating whether to do per-channel or per-tensor
quantization
fully_quantize: Bool indicating whether to fully quantize the model. Besides
model body, the input/output will be quantized as well.
inference_type: Data type for the activations. The default value is int8.
Returns:
Quantized model in serialized form (e.g. a TFLITE model) with floating-point
inputs and outputs.
"""
return wrap_toco.wrapped_experimental_mlir_quantize(input_data_str,
disable_per_channel,
fully_quantize,
inference_type)
def mlir_sparsify(input_data_str):
"""Sparsify `input_data_str` to encode sparse tensor with proper format.
Args:
input_data_str: Input data in serialized form (e.g. a TFLITE model).
Returns:
Sparsified model in serialized form (e.g. a TFLITE model).
"""
return wrap_toco.wrapped_experimental_mlir_sparsify(input_data_str)
def toco_convert_protos(model_flags_str,
toco_flags_str,
input_data_str,
debug_info_str=None,
enable_mlir_converter=False):
"""Convert `input_data_str` according to model and toco parameters.
Unless you know what you are doing consider using
the more friendly `tf.compat.v1.lite.toco_convert`.
Args:
model_flags_str: Serialized proto describing model properties, see
`toco/model_flags.proto`.
toco_flags_str: Serialized proto describing conversion properties, see
`toco/toco_flags.proto`.
input_data_str: Input data in serialized form (e.g. a graphdef is common)
debug_info_str: Serialized `GraphDebugInfo` proto describing logging
information. (default None)
enable_mlir_converter: Enables MLIR-based conversion instead of the default
TOCO conversion. (default False)
Returns:
Converted model in serialized form (e.g. a TFLITE model is common).
Raises:
ConverterError: When conversion fails in TFLiteConverter, usually due to
ops not being supported.
RuntimeError: When conversion fails, an exception is raised with the error
message embedded.
"""
# Historically, TOCO conversion failures would trigger a crash, so we would
# attempt to run the converter out-of-process. The MLIR conversion pipeline
# surfaces errors instead, and can be safely run in-process.
if enable_mlir_converter or not _toco_from_proto_bin:
try:
model_str = wrap_toco.wrapped_toco_convert(model_flags_str,
toco_flags_str, input_data_str,
debug_info_str,
enable_mlir_converter)
return model_str
except Exception as e:
raise ConverterError(str(e))
if distutils.spawn.find_executable(_toco_from_proto_bin) is None:
raise ConverterError("""Could not find toco_from_protos binary, make sure
your virtualenv bin directory or pip local bin directory is in your path.
In particular, if you have installed TensorFlow with --user, make sure you
add the install directory to your path.
For example:
Linux: export PATH=$PATH:~/.local/bin/
Mac: export PATH=$PATH:~/Library/Python/<version#>/bin
Alternative, use virtualenv.""")
# Windows and TemporaryFile are not that useful together,
# since you cannot have two readers/writers. So we have to
# make the temporaries and close and delete them explicitly.
toco_filename, model_filename, input_filename, output_filename = (None, None,
None, None)
try:
# Build all input files
with _tempfile.NamedTemporaryFile(delete=False) as fp_toco, \
_tempfile.NamedTemporaryFile(delete=False) as fp_model, \
_tempfile.NamedTemporaryFile(delete=False) as fp_input, \
_tempfile.NamedTemporaryFile(delete=False) as fp_debug:
toco_filename = fp_toco.name
input_filename = fp_input.name
model_filename = fp_model.name
debug_filename = fp_debug.name
fp_model.write(model_flags_str)
fp_toco.write(toco_flags_str)
fp_input.write(six.ensure_binary(input_data_str))
debug_info_str = debug_info_str if debug_info_str else ""
# if debug_info_str contains a "string value", then the call to
# fp_debug.write(debug_info_str) will fail with the following error
#
# TypeError: a bytes-like object is required, not 'str'
#
# Some of the subtests within the "convert_test" unit-test fail
# with the error shown above. So watch out for that scenario and
# convert debug_info_str to bytes where needed
if not isinstance(debug_info_str, bytes):
fp_debug.write(debug_info_str.encode("utf-8"))
else:
fp_debug.write(debug_info_str)
# Reserve an output file
with _tempfile.NamedTemporaryFile(delete=False) as fp:
output_filename = fp.name
# Run
cmd = [
_toco_from_proto_bin,
model_filename,
toco_filename,
input_filename,
output_filename,
"--debug_proto_file={}".format(debug_filename),
]
if enable_mlir_converter:
cmd.append("--enable_mlir_converter")
cmdline = " ".join(cmd)
is_windows = _platform.system() == "Windows"
proc = _subprocess.Popen(
cmdline,
shell=True,
stdout=_subprocess.PIPE,
stderr=_subprocess.STDOUT,
close_fds=not is_windows)
stdout, stderr = proc.communicate()
exitcode = proc.returncode
if exitcode == 0:
with open(output_filename, "rb") as fp:
return fp.read()
else:
stdout = _try_convert_to_unicode(stdout)
stderr = _try_convert_to_unicode(stderr)
raise ConverterError("See console for info.\n%s\n%s\n" % (stdout, stderr))
finally:
# Must manually cleanup files.
for filename in [
toco_filename, input_filename, model_filename, output_filename
]:
try:
_os.unlink(filename)
except (OSError, TypeError):
pass
def build_toco_convert_protos(input_tensors,
output_tensors,
inference_type=lite_constants.FLOAT,
inference_input_type=None,
input_format=lite_constants.TENSORFLOW_GRAPHDEF,
input_shapes=None,
output_format=lite_constants.TFLITE,
quantized_input_stats=None,
default_ranges_stats=None,
drop_control_dependency=True,
reorder_across_fake_quant=False,
allow_custom_ops=False,
custom_opdefs=None,
change_concat_input_ranges=False,
post_training_quantize=False,
quantize_to_float16=False,
dump_graphviz_dir=None,
dump_graphviz_video=False,
target_ops=None,
allow_nonexistent_arrays=False,
debug_info=None,
conversion_summary_dir=None,
saved_model_dir=None,
saved_model_version=0,
saved_model_tags=None,
saved_model_exported_names=None):
"""Builds protocol buffers describing a conversion of a model using TOCO.
Typically this is to convert from TensorFlow GraphDef to TFLite, in which
case the default `input_format` and `output_format` are sufficient.
Args:
input_tensors: List of input tensors. Type and shape are computed using
`foo.shape` and `foo.dtype`.
output_tensors: List of output tensors (only .name is used from this).
inference_type: Target data type of real-number arrays in the output file.
Must be `{tf.float32, tf.uint8, tf.int8}`. (default tf.float32)
inference_input_type: Target data type of real-number input arrays. Allows
for a different type for input arrays in the case of quantization. Must be
`{tf.float32, tf.uint8, tf.int8}`. (default `inference_type`)
input_format: Type of data to read Currently must be
`{TENSORFLOW_GRAPHDEF}`. (default TENSORFLOW_GRAPHDEF)
input_shapes: Input array shape. It needs to be a list of the same length as
`input_tensors`, or None. (default None)
output_format: Output file format. Currently must be `{TFLITE,
GRAPHVIZ_DOT}`. (default TFLITE)
quantized_input_stats: List of tuples of floats representing the mean and
standard deviation. Each tuple maps to the corresponding input tensor.
Only need if `inference_input_type` is `QUANTIZED_UINT8` or `INT8`.
real_input_value = (quantized_input_value - mean_value) / std_dev_value.
(default None)
default_ranges_stats: Tuple of integers representing (min, max) range values
for all arrays without a specified range. Intended for experimenting with
quantization via "dummy quantization". (default None)
drop_control_dependency: Boolean indicating whether to drop control
dependencies silently. This is due to TFLite not supporting control
dependencies. (default True)
reorder_across_fake_quant: Boolean indicating whether to reorder FakeQuant
nodes in unexpected locations. Used when the location of the FakeQuant
nodes is preventing graph transformations necessary to convert the graph.
Results in a graph that differs from the quantized training graph,
potentially causing differing arithmetic behavior. (default False)
allow_custom_ops: Boolean indicating whether to allow custom operations.
When false any unknown operation is an error. When true, custom ops are
created for any op that is unknown. The developer will need to provide
these to the TensorFlow Lite runtime with a custom resolver. (default
False)
custom_opdefs: List of strings representing custom ops OpDefs that are
included in the GraphDef. Required when using custom operations with the
MLIR-based converter. (default None)
change_concat_input_ranges: Boolean to change behavior of min/max ranges for
inputs and outputs of the concat operator for quantized models. Changes
the ranges of concat operator overlap when true. (default False)
post_training_quantize: Boolean indicating whether to quantize the weights
of the converted float model. Model size will be reduced and there will be
latency improvements (at the cost of accuracy). (default False)
quantize_to_float16: Boolean indicating whether to convert float buffers to
float16. (default False)
dump_graphviz_dir: Full filepath of folder to dump the graphs at various
stages of processing GraphViz .dot files. Preferred over
--output_format=GRAPHVIZ_DOT in order to keep the requirements of the
output file. (default None)
dump_graphviz_video: Boolean indicating whether to dump the graph after
every graph transformation. (default False)
target_ops: Experimental flag, subject to change. Set of OpsSet options
indicating which converter to use. (default set([OpsSet.TFLITE_BUILTINS]))
allow_nonexistent_arrays: Allow specifying array names that don't exist or
are unused in the final graph. (default False)
debug_info: `GraphDebugInfo` proto containing the stack traces for the
original nodes referred by the converted graph.
conversion_summary_dir: A string, the path to the generated conversion logs.
saved_model_dir: Filepath of the saved model to be converted. This value
will be non-empty only when the saved model import path will be used.
Otherwises, the graph def-based conversion will be processed.
saved_model_version: SavedModel file format version of The saved model file
to be converted. This value will be set only when the SavedModel import
path will be used.
saved_model_tags: Set of string saved model tags, formatted in the
comma-separated value. This value will be set only when the SavedModel
import path will be used.
saved_model_exported_names: Names to be exported (default: export all) when
the saved model import path is on. This value will be set only when the
SavedModel import path will be used.
Returns:
model_flags, toco_flags, debug_info: three protocol buffers describing the
conversion process and debug information.
Raises:
ValueError:
If the input tensor type is unknown
Missing mean_values or std_dev_values
RuntimeError: If TOCO fails to convert (in which case the runtime error's
error text will contain the TOCO error log)
"""
toco = _toco_flags_pb2.TocoFlags()
toco.input_format = input_format
toco.output_format = output_format
toco.inference_type = util.convert_dtype_to_tflite_type(inference_type)
if inference_input_type:
toco.inference_input_type = util.convert_dtype_to_tflite_type(
inference_input_type)
else:
toco.inference_input_type = toco.inference_type
toco.drop_control_dependency = drop_control_dependency
toco.reorder_across_fake_quant = reorder_across_fake_quant
toco.allow_custom_ops = allow_custom_ops
if custom_opdefs:
toco.custom_opdefs.extend(custom_opdefs)
toco.post_training_quantize = post_training_quantize
toco.quantize_to_float16 = quantize_to_float16
if default_ranges_stats:
toco.default_ranges_min = default_ranges_stats[0]
toco.default_ranges_max = default_ranges_stats[1]
if dump_graphviz_dir:
toco.dump_graphviz_dir = dump_graphviz_dir
toco.dump_graphviz_include_video = dump_graphviz_video
if conversion_summary_dir:
toco.conversion_summary_dir = conversion_summary_dir
if target_ops:
if set(target_ops) == set([OpsSet.TFLITE_BUILTINS, OpsSet.SELECT_TF_OPS]):
toco.enable_select_tf_ops = True
elif set(target_ops) == set([OpsSet.SELECT_TF_OPS]):
toco.enable_select_tf_ops = True
toco.force_select_tf_ops = True
model = _model_flags_pb2.ModelFlags()
model.change_concat_input_ranges = change_concat_input_ranges
for idx, input_tensor in enumerate(input_tensors):
input_array = model.input_arrays.add()
if saved_model_dir:
input_array.name = input_tensor.name
else:
input_array.name = util.get_tensor_name(input_tensor)
input_array.data_type = util.convert_dtype_to_tflite_type(
input_tensor.dtype)
if _requires_input_stats(toco) and quantized_input_stats:
input_array.mean_value, input_array.std_value = quantized_input_stats[idx]
if input_shapes is None:
shape = input_tensor.shape
else:
shape = input_shapes[idx]
# Create shapes with -1 for unknown dimensions.
dims = []
for dim in shape:
if (dim is None or
(isinstance(dim, tensor_shape.Dimension) and dim.value is None)):
dims.append(-1)
else:
dims.append(int(dim))
input_array.shape.dims.extend(dims)
for output_tensor in output_tensors:
if saved_model_dir:
model.output_arrays.append(output_tensor.name)
else:
model.output_arrays.append(util.get_tensor_name(output_tensor))
model.allow_nonexistent_arrays = allow_nonexistent_arrays
if saved_model_dir:
model.saved_model_dir = saved_model_dir
model.saved_model_version = saved_model_version
if saved_model_tags:
model.saved_model_tags.extend(saved_model_tags)
if saved_model_exported_names:
model.saved_model_exported_names.extend(saved_model_exported_names)
return model, toco, debug_info
def toco_convert_graph_def(input_data, input_arrays_with_shape, output_arrays,
enable_mlir_converter, *args, **kwargs):
""""Convert a model using TOCO.
This function is used to convert GraphDefs that cannot be loaded into
TensorFlow to TFLite. Conversion can be customized by providing arguments
that are forwarded to `build_toco_convert_protos` (see documentation for
details).
Args:
input_data: Input data (i.e. often `sess.graph_def`),
input_arrays_with_shape: Tuple of strings representing input tensor names
and list of integers representing input shapes
(e.g., [("foo" : [1, 16, 16, 3])]). Use only when graph cannot be loaded
into TensorFlow and when `input_tensors` is None. (default None)
output_arrays: List of output tensors to freeze graph with. Use only when
graph cannot be loaded into TensorFlow and when `output_tensors` is None.
(default None)
enable_mlir_converter: Enables MLIR-based conversion instead of TOCO
conversion.
*args: See `build_toco_convert_protos`,
**kwargs: See `build_toco_convert_protos`.
Returns:
The converted data. For example if TFLite was the destination, then
this will be a tflite flatbuffer in a bytes array.
Raises:
Defined in `build_toco_convert_protos`.
"""
model_flags, toco_flags, _ = build_toco_convert_protos(
input_tensors=[], output_tensors=[], *args, **kwargs)
for idx, (name, shape) in enumerate(input_arrays_with_shape):
input_array = model_flags.input_arrays.add()
if _requires_input_stats(toco_flags):
if (("quantized_input_stats" not in kwargs) or
(not kwargs["quantized_input_stats"])):
raise ValueError("std_dev and mean must be defined when inference_type "
"or inference_input_type is QUANTIZED_UINT8 or INT8.")
input_array.mean_value, input_array.std_value = kwargs[
"quantized_input_stats"][idx]
input_array.name = name
input_array.shape.dims.extend(list(map(int, shape)))
for name in output_arrays:
model_flags.output_arrays.append(name)
data = toco_convert_protos(
model_flags.SerializeToString(),
toco_flags.SerializeToString(),
input_data.SerializeToString(),
enable_mlir_converter=enable_mlir_converter)
return data
def toco_convert_impl(input_data, input_tensors, output_tensors,
enable_mlir_converter, *args, **kwargs):
""""Convert a model using TOCO.
Typically this function is used to convert from TensorFlow GraphDef to TFLite.
Conversion can be customized by providing arguments that are forwarded to
`build_toco_convert_protos` (see documentation for details).
Args:
input_data: Input data (i.e. often `sess.graph_def`),
input_tensors: List of input tensors. Type and shape are computed using
`foo.shape` and `foo.dtype`.
output_tensors: List of output tensors (only .name is used from this).
enable_mlir_converter: Enables MLIR-based conversion instead of TOCO
conversion.
*args: See `build_toco_convert_protos`,
**kwargs: See `build_toco_convert_protos`.
Returns:
The converted data. For example if TFLite was the destination, then
this will be a tflite flatbuffer in a bytes array.
Raises:
Defined in `build_toco_convert_protos`.
"""
model_flags, toco_flags, debug_info = build_toco_convert_protos(
input_tensors, output_tensors, *args, **kwargs)
debug_info_str = debug_info.SerializeToString() if debug_info else None
data = toco_convert_protos(
model_flags.SerializeToString(),
toco_flags.SerializeToString(),
input_data.SerializeToString(),
debug_info_str=debug_info_str,
enable_mlir_converter=enable_mlir_converter)
return data
@_tf_export(v1=["lite.toco_convert"])
@deprecation.deprecated(None, "Use `lite.TFLiteConverter` instead.")
def toco_convert(input_data, input_tensors, output_tensors, *args, **kwargs):
"""Convert a model using TOCO.
Typically this function is used to convert from TensorFlow GraphDef to TFLite.
Conversion can be customized by providing arguments that are forwarded to
`build_toco_convert_protos` (see documentation for details). This function has
been deprecated. Please use `lite.TFLiteConverter` instead.
Args:
input_data: Input data (i.e. often `sess.graph_def`),
input_tensors: List of input tensors. Type and shape are computed using
`foo.shape` and `foo.dtype`.
output_tensors: List of output tensors (only .name is used from this).
*args: See `build_toco_convert_protos`,
**kwargs: See `build_toco_convert_protos`.
Returns:
The converted data. For example if TFLite was the destination, then
this will be a tflite flatbuffer in a bytes array.
Raises:
Defined in `build_toco_convert_protos`.
"""
enable_mlir_converter = kwargs.get("enable_mlir_converter", False)
return toco_convert_impl(input_data, input_tensors, output_tensors,
enable_mlir_converter, *args, **kwargs)