130 lines
4.8 KiB
C++
130 lines
4.8 KiB
C++
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h"
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/common.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/logistic.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
#include "tensorflow/lite/kernels/op_macros.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace micro {
|
|
namespace activations {
|
|
namespace {
|
|
constexpr int kInputTensor = 0;
|
|
constexpr int kOutputTensor = 0;
|
|
|
|
struct OpData {
|
|
int32_t input_zero_point;
|
|
int32_t input_range_radius;
|
|
int32_t input_multiplier;
|
|
int input_left_shift;
|
|
};
|
|
|
|
TfLiteStatus CalculateArithmeticOpData(TfLiteContext* context, TfLiteNode* node,
|
|
OpData* data) {
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
|
|
TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
|
|
if (input->type == kTfLiteInt8) {
|
|
TF_LITE_ENSURE_EQ(context, output->params.zero_point,
|
|
std::numeric_limits<int8_t>::min());
|
|
|
|
static constexpr int kInputIntegerBits = 4;
|
|
const double input_real_multiplier =
|
|
static_cast<double>(input->params.scale) *
|
|
static_cast<double>(1 << (31 - kInputIntegerBits));
|
|
|
|
const double q = std::frexp(input_real_multiplier, &data->input_left_shift);
|
|
data->input_multiplier = static_cast<int32_t>(TfLiteRound(q * (1ll << 31)));
|
|
|
|
data->input_range_radius =
|
|
CalculateInputRadius(kInputIntegerBits, data->input_left_shift, 31);
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
} // namespace
|
|
|
|
TfLiteStatus LogisticEval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
|
OpData data;
|
|
CalculateArithmeticOpData(context, node, &data);
|
|
|
|
if (input->type == kTfLiteFloat32) {
|
|
switch (output->type) {
|
|
case kTfLiteFloat32: {
|
|
reference_ops::Logistic(
|
|
GetTensorShape(input), GetTensorData<float>(input),
|
|
GetTensorShape(output), GetTensorData<float>(output));
|
|
return kTfLiteOk;
|
|
}
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
|
TfLiteTypeGetName(input->type),
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
} else if (input->type == kTfLiteInt8) {
|
|
switch (output->type) {
|
|
case kTfLiteInt8: {
|
|
reference_integer_ops::Logistic(
|
|
input->params.zero_point, data.input_range_radius,
|
|
data.input_multiplier, data.input_left_shift,
|
|
NumElements(input->dims), GetTensorData<int8_t>(input),
|
|
GetTensorData<int8_t>(output));
|
|
return kTfLiteOk;
|
|
}
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
|
TfLiteTypeGetName(input->type),
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
} else {
|
|
// TODO(b/141211002): Also support other data types once we have supported
|
|
// temporary tensors in TFLM.
|
|
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
|
TfLiteTypeGetName(input->type),
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace activations
|
|
|
|
TfLiteRegistration* Register_LOGISTIC() {
|
|
static TfLiteRegistration r = {/*init=*/nullptr,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/nullptr,
|
|
/*invoke=*/activations::LogisticEval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
return &r;
|
|
}
|
|
} // namespace micro
|
|
} // namespace ops
|
|
} // namespace tflite
|