With this CL: * We have the hooks needed to register an operator specific parse function with MicroMutableOpResolver and the retrieve it without ParseOpData being used. * This CL is still passing in ParseOpData as the operator specific parse function and that will be changed in a follow-on CL. PiperOrigin-RevId: 314982707 Change-Id: I174259aabd66e97184a8a282832f6c71580366c9
162 lines
6.1 KiB
C++
162 lines
6.1 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include "tensorflow/lite/kernels/internal/reference/dequantize.h"
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/quantization_util.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/quantize.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/requantize.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace micro {
|
|
namespace dequantize {
|
|
|
|
struct OpData {
|
|
// The scaling factor from input to output (aka the 'real multiplier') can
|
|
// be represented as a fixed point multiplier plus a left shift.
|
|
int32_t output_multiplier;
|
|
int output_shift;
|
|
};
|
|
|
|
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
|
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
|
void* data = nullptr;
|
|
if (context->AllocatePersistentBuffer(context, sizeof(OpData), &data) ==
|
|
kTfLiteError) {
|
|
return nullptr;
|
|
}
|
|
return data;
|
|
}
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
OpData* data = static_cast<OpData*>(node->user_data);
|
|
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
|
|
|
// TODO(b/140515557): Add cached dequant to improve hybrid model performance.
|
|
const TfLiteTensor* input = GetInput(context, node, 0);
|
|
TfLiteTensor* output = GetOutput(context, node, 0);
|
|
|
|
TF_LITE_ENSURE(context, input->type == kTfLiteUInt8 ||
|
|
input->type == kTfLiteInt8 ||
|
|
input->type == kTfLiteInt16);
|
|
TF_LITE_ENSURE(
|
|
context, output->type == kTfLiteFloat32 || output->type == kTfLiteInt32);
|
|
|
|
if (output->type == kTfLiteInt32) {
|
|
const double effective_output_scale =
|
|
static_cast<double>(input->params.scale) /
|
|
static_cast<double>(output->params.scale);
|
|
QuantizeMultiplier(effective_output_scale, &data->output_multiplier,
|
|
&data->output_shift);
|
|
}
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
TFLITE_DCHECK(node->user_data != nullptr);
|
|
OpData* data = static_cast<OpData*>(node->user_data);
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, 0);
|
|
TfLiteTensor* output = GetOutput(context, node, 0);
|
|
|
|
if (output->type == kTfLiteFloat32) {
|
|
tflite::DequantizationParams op_params;
|
|
op_params.zero_point = input->params.zero_point;
|
|
op_params.scale = static_cast<double>(input->params.scale);
|
|
switch (input->type) {
|
|
case kTfLiteUInt8:
|
|
reference_ops::Dequantize(
|
|
op_params, GetTensorShape(input), GetTensorData<uint8_t>(input),
|
|
GetTensorShape(output), GetTensorData<float>(output));
|
|
break;
|
|
case kTfLiteInt8:
|
|
reference_ops::Dequantize(
|
|
op_params, GetTensorShape(input), GetTensorData<int8_t>(input),
|
|
GetTensorShape(output), GetTensorData<float>(output));
|
|
break;
|
|
case kTfLiteInt16:
|
|
reference_ops::Dequantize(
|
|
op_params, GetTensorShape(input), GetTensorData<int16_t>(input),
|
|
GetTensorShape(output), GetTensorData<float>(output));
|
|
break;
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
|
TfLiteTypeGetName(input->type),
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
} else if (output->type == kTfLiteInt32) {
|
|
int flat_size =
|
|
MatchingFlatSize(GetTensorShape(input), GetTensorShape(output));
|
|
switch (input->type) {
|
|
case kTfLiteInt16: {
|
|
reference_ops::Requantize(
|
|
GetTensorData<int16_t>(input), flat_size, data->output_multiplier,
|
|
data->output_shift, input->params.zero_point,
|
|
output->params.zero_point, GetTensorData<int32_t>(output));
|
|
break;
|
|
}
|
|
case kTfLiteInt8: {
|
|
reference_ops::Requantize(
|
|
GetTensorData<int8_t>(input), flat_size, data->output_multiplier,
|
|
data->output_shift, input->params.zero_point,
|
|
output->params.zero_point, GetTensorData<int32_t>(output));
|
|
break;
|
|
}
|
|
default:
|
|
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
|
TfLiteTypeGetName(input->type),
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
} else {
|
|
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
|
|
TfLiteTypeGetName(input->type),
|
|
TfLiteTypeGetName(output->type));
|
|
return kTfLiteError;
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
} // namespace dequantize
|
|
|
|
TfLiteRegistration* Register_DEQUANTIZE() {
|
|
// TODO(b/149408647): Once we remove AddBuiltin from MicroOpResolver and
|
|
// completely switch to the templated AddBuiltin from MicroMutableOpResolver,
|
|
// this struct no longer needs to be static and can be returned by value.
|
|
static TfLiteRegistration r = {/*init=*/dequantize::Init,
|
|
/*free=*/nullptr,
|
|
/*prepare=*/dequantize::Prepare,
|
|
/*invoke=*/dequantize::Eval,
|
|
/*profiling_string=*/nullptr,
|
|
/*builtin_code=*/0,
|
|
/*custom_name=*/nullptr,
|
|
/*version=*/0};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace micro
|
|
} // namespace ops
|
|
} // namespace tflite
|