148 lines
5.1 KiB
C++
148 lines
5.1 KiB
C++
/* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
==============================================================================*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "tensorflow/lite/c/builtin_op_data.h"
|
|
#include "tensorflow/lite/c/common.h"
|
|
#include "tensorflow/lite/kernels/internal/reference/reference_ops.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor.h"
|
|
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
|
|
#include "tensorflow/lite/kernels/internal/types.h"
|
|
#include "tensorflow/lite/kernels/kernel_util.h"
|
|
|
|
namespace tflite {
|
|
namespace ops {
|
|
namespace builtin {
|
|
namespace unpack {
|
|
namespace {
|
|
|
|
constexpr int kInputTensor = 0;
|
|
|
|
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteUnpackParams* data =
|
|
reinterpret_cast<TfLiteUnpackParams*>(node->builtin_data);
|
|
|
|
TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
|
|
TF_LITE_ENSURE_EQ(context, NumOutputs(node), data->num);
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
TF_LITE_ENSURE(context, NumElements(input) > 0);
|
|
int axis = data->axis;
|
|
if (axis < 0) {
|
|
axis += NumDimensions(input);
|
|
}
|
|
TF_LITE_ENSURE(context, 0 <= axis && axis < NumDimensions(input));
|
|
if (input->type != kTfLiteInt32 && input->type != kTfLiteFloat32 &&
|
|
input->type != kTfLiteUInt8 && input->type != kTfLiteInt8 &&
|
|
input->type != kTfLiteInt16 && input->type != kTfLiteBool) {
|
|
context->ReportError(context, "Type '%s' is not supported by unpack.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
|
|
const TfLiteIntArray* input_shape = input->dims;
|
|
// Num should be equal to the shape[axis].
|
|
// Resize outputs. rank will be R - 1.
|
|
TfLiteIntArray* output_shape = TfLiteIntArrayCreate(NumDimensions(input) - 1);
|
|
int o = 0;
|
|
for (int index = 0; index < NumDimensions(input); ++index) {
|
|
if (index != axis) {
|
|
output_shape->data[o++] = input_shape->data[index];
|
|
}
|
|
}
|
|
|
|
TF_LITE_ENSURE_EQ(context, data->num, input_shape->data[axis]);
|
|
for (int i = 0; i < data->num; ++i) {
|
|
TfLiteIntArray* copied_output_shape = TfLiteIntArrayCopy(output_shape);
|
|
TfLiteTensor* output = GetOutput(context, node, i);
|
|
TF_LITE_ENSURE_TYPES_EQ(context, output->type, input->type);
|
|
// Guarantee input/output quantization params match as we do not support
|
|
// rescaling of unpacked quantized tensors.
|
|
TF_LITE_ENSURE_EQ(context, input->params.zero_point,
|
|
output->params.zero_point);
|
|
TF_LITE_ENSURE_EQ(context, input->params.scale, output->params.scale);
|
|
TF_LITE_ENSURE_OK(
|
|
context, context->ResizeTensor(context, output, copied_output_shape));
|
|
}
|
|
|
|
TfLiteIntArrayFree(output_shape);
|
|
return kTfLiteOk;
|
|
}
|
|
|
|
template <typename T>
|
|
void UnpackImpl(TfLiteContext* context, TfLiteNode* node,
|
|
const TfLiteTensor* input, int output_count, int axis) {
|
|
tflite::UnpackParams op_params;
|
|
op_params.axis = axis;
|
|
op_params.num_split = output_count;
|
|
VectorOfTensors<T> all_outputs(*context, *node->outputs);
|
|
reference_ops::Unpack<T>(op_params, GetTensorShape(input),
|
|
GetTensorData<T>(input), **all_outputs.shapes(),
|
|
all_outputs.data());
|
|
}
|
|
|
|
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
|
const TfLiteUnpackParams* data =
|
|
reinterpret_cast<TfLiteUnpackParams*>(node->builtin_data);
|
|
|
|
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
|
switch (input->type) {
|
|
case kTfLiteFloat32: {
|
|
UnpackImpl<float>(context, node, input, data->num, data->axis);
|
|
break;
|
|
}
|
|
case kTfLiteInt32: {
|
|
UnpackImpl<int32_t>(context, node, input, data->num, data->axis);
|
|
break;
|
|
}
|
|
case kTfLiteUInt8: {
|
|
UnpackImpl<uint8_t>(context, node, input, data->num, data->axis);
|
|
break;
|
|
}
|
|
case kTfLiteInt8: {
|
|
UnpackImpl<int8_t>(context, node, input, data->num, data->axis);
|
|
break;
|
|
}
|
|
case kTfLiteBool: {
|
|
UnpackImpl<bool>(context, node, input, data->num, data->axis);
|
|
break;
|
|
}
|
|
case kTfLiteInt16: {
|
|
UnpackImpl<int16_t>(context, node, input, data->num, data->axis);
|
|
break;
|
|
}
|
|
default: {
|
|
context->ReportError(context, "Type '%s' is not supported by unpack.",
|
|
TfLiteTypeGetName(input->type));
|
|
return kTfLiteError;
|
|
}
|
|
}
|
|
|
|
return kTfLiteOk;
|
|
}
|
|
} // namespace
|
|
} // namespace unpack
|
|
|
|
TfLiteRegistration* Register_UNPACK() {
|
|
static TfLiteRegistration r = {nullptr, nullptr, unpack::Prepare,
|
|
unpack::Eval};
|
|
return &r;
|
|
}
|
|
|
|
} // namespace builtin
|
|
} // namespace ops
|
|
} // namespace tflite
|